【种花家务·代数】2-3-10可以化为二元一次方程组或三元一次方程组来解的分式方程组
【阅前提示】本篇出自『数理化自学丛书6677版』,此版丛书是“数理化自学丛书编委会”于1963-1966年陆续出版,并于1977年正式再版的基础自学教材,本系列丛书共包含17本,层次大致相当于如今的初高中水平,其最大特点就是可用于“自学”。当然由于本书是大半个世纪前的教材,很多概念已经与如今迥异,因此不建议零基础学生直接拿来自学。不过这套丛书却很适合像我这样已接受过基础教育但却很不扎实的学酥重新自修以查漏补缺。另外,黑字是教材原文,彩字是我写的注解。
【山话嵓语】我在原有“自学丛书”系列17册的基础上又添加了1册八五人教甲种本《微积分初步》,原因有二:一则,我是双鱼座,有一定程度的偶双症,但“自学丛书”系列中代数4册、几何5册实在令我刺挠,因此就需要加入一本代数,使两边能够对偶平衡;二则,我认为《微积分初步》这本书对“准大学生”很重要,以我的惨痛教训为例,大一高数第一堂课,我是直接蒙圈,学了个寂寞。另外大学物理的前置条件是必须有基础微积分知识,因此我所读院校的大学物理课是推迟开课;而比较生猛的大学则是直接开课,然后在绪论课中猛灌基础高数(例如田光善舒幼生老师的力学课)。我选择在“自学丛书”17本的基础上添加这本《微积分初步》,就是希望小伙伴升大学前可以看看,不至于像我当年那样被高数打了个措手不及。
第三章一次方程组
§3-10可以化为二元一次方程组或者三元一次方程组来解的分式方程组
【01】含有分式方程的方程组,叫做分式方程组。例如,等等都是分式方程组。第一个方程组里只有一个方程是分式方程,第二个方程组里,两个方程都是分式方程。
【02】下面我们研究可以化为二元一次方程组或者三元一次方程组来解的分式方程组的解法。
例1.解方程组:
【解】先把原方程组变形成整式方程组。
方程(1)的两边都乘以 (x+2)(y+3),并加以整理,得 5(y+3)-(+2)=0,
就是-x+5y=-13……(3)
方程(2)的两边都乘以 (x-2),得 y+5=3(x-2),
就是 3x-y=11……(4)
解(3)和(4)组成的方程组,得
把 x=3,y=-2 代入原方程组里的方程(1)和(2),都能适合,所以原方程组的解是
【说明】由于把分式方程变形成整式方程,所以从解整式方程组中所得到的解,必须代入原分式方程组中进行检验;如果适合,就是原方程组的解,如果不适合,就是增解,应该把它去掉。这点和第一章中解一元分式方程时必须进行检验是同样的道理。
习题3-10(1)
解下列各方程组:
【答案】
【03】有些特殊形式的分式方程组,我们可以利用改变未知数的方法,把它变成二元或者三元一次方程组再解,下面举例来说明。
例2.解方程组:
【分析】观察这个方程组,可以看出, 。如果把 1/x 和 1/y 看做新的未知数,那末它就可以变形成二元一次方程组的形式,先求出 1/x 和 1/y 的值,然后再求 x 和 y 的值。
【解】设 1/x=u, 1/y=v;那末原方程组就变成:
解这个方程组,得
就是
因此
把 x=-1/2,y=1 代入原方程组都能适合。所以原方程组的解是
【说明1】象本题这样用新的未知数代替原有的未知数的方法,叫做辅助未知数法(也叫做换元法)。以后解方程或者解方程组时常会用到。
【说明2】本题如果按例1的方法一样,先化成整式方程,将要出现含有 xy 的项,这就超出了二元一次方程组的范围,不仅目前不能解,并且解法也比较麻烦。这样可以看出引入辅助未知数法的优点了。
例3.解方程组:
【分析】利用辅助未知数法,把和
看做新的未知数,先求出
和
的值,然后再求 x 和 y 的值。
【解】设;那末原方程组就变成:
解这个方程组,得
就是
由,x-3=2,∴ x=5;
由,2y+3=-1,∴ y=-2 。
以 x=5,y=-2 代入原方程组都能适合。所以原方程组的解是
【04】解三元分式方程组,也可以采用同样的方法。
例4.解方程组:
【分析】把 1/x,1/y,1/z 看做新的未知数,用辅助未如数法解这个方程组。
【解】设 1/x=u,1/y=v,1/z=w;那末原方程组就变成:
先消去 w 。
(4)+(5):
(4) × 2+(6):
解(7)和(8)组成的二元一次方程组,得
以 u=-1,v=1/2 代入(4),得-1-1+w=1,∴ w=3 。
就是∴
以 x=-1,y=2,z=1/3 代入原方程组,都能适合。
所以原方程组的解是
习题3-10(2)
解下列各方程组(1~8):
[提示:第6题中,1-2x 应该先化成-(2x-1),然后用辅助未知数法解.]
解下列关于公和y的方程组(9~12):
[提示:2x-2 和 6y-3 可以分别化成 2(x-1) 和 3(2y-1),然后用换元法来解]
【答案】