欢迎光临散文网 会员登陆 & 注册

拉比震荡

2023-06-29 21:53 作者:阳既望  | 我要投稿



对于非共振场,时间平均值的推导可以利用拉格朗日中值定理和各态历经假设。具体步骤如下:

假设非共振场的强度为E_0%5Ccos(%5Comega%20t),其中%5Comega是远大于原子能级间跃迁频率的高频场。

假设原子的二能级系统为%7Cg%5Crangle%7Ce%5Crangle,其中%7Cg%5Crangle是基态,%7Ce%5Crangle是激发态,能级差为%5Chbar%5Comega_0

假设原子在非共振场中的哈密顿量为H%3DH_0%2BH_1(t),其中H_0%3D%5Cfrac%7B1%7D%7B2%7D%5Chbar%5Comega_0%5Csigma_z是原子的自由哈密顿量,%5Csigma_z%3D%7Ce%5Crangle%5Clangle%20e%7C-%7Cg%5Crangle%5Clangle%20g%7C是泡利矩阵,H_1(t)%3D-%5Cfrac%7B1%7D%7B2%7D%5Chbar%5COmega%5Ccos(%5Comega%20t)%5Csigma_x是与场相互作用的哈密顿量,%5COmega%3DE_0d%2F%5Chbar是拉比频率,d%3D%5Clangle%20e%7C%5Chat%7Bd%7D%7Cg%5Crangle是偶极矩矩阵元,%5Csigma_x%3D%7Ce%5Crangle%5Clangle%20g%7C%2B%7Cg%5Crangle%5Clangle%20e%7C是泡利矩阵。

假设原子在t%3D0时处于基态%7Cg%5Crangle,求解含时薛定谔方程i%5Chbar%5Cfrac%7B%5Cmathrm%7Bd%7D%7D%7B%5Cmathrm%7Bd%7Dt%7D%7C%5Cpsi(t)%5Crangle%3DH%7C%5Cpsi(t)%5Crangle,得到原子在任意时刻t的态为%7C%5Cpsi(t)%5Crangle%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%5Cleft(1%2B%5Cfrac%7B%5COmega%7D%7B%5Comega%7D%5Cright)e%7B-i(%5Comega_0-%5Comega)t%2F2%7D-%5Cleft(1-%5Cfrac%7B%5COmega%7D%7B%5Comega%7D%5Cright)e%7B-i(%5Comega_0%2B%5Comega)t%2F2%7D%5Cright%5D%7Cg%5Crangle%2B%5Cfrac%7Bi%7D%7B2%7D%5Cleft%5B%5Cleft(1%2B%5Cfrac%7B%5COmega%7D%7B%5Comega%7D%5Cright)e%7B-i(%5Comega_0-%5Comega)t%2F2%7D%2B%5Cleft(1-%5Cfrac%7B%5COmega%7D%7B%5Comega%7D%5Cright)e%7B-i(%5Comega_0%2B%5Comega)t%2F2%7D%5Cright%5D%7Ce%5Crangle%20

计算原子在激发态的几率为%20P_e(t)%3D%7C%5Clangle%20e%7C%5Cpsi(t)%5Crangle%7C2%3D%5Cfrac%7B1%7D%7B4%7D%5Cleft(1%2B%5Cfrac%7B%5COmega2%7D%7B%5Comega2%7D%5Cright)%2B%5Cfrac%7B1%7D%7B4%7D%5Cleft(1-%5Cfrac%7B%5COmega2%7D%7B%5Comega%5E2%7D%5Cright)%5Ccos(%5Comega%20t)%20

对原子在激发态的几率进行时间平均,即在一个周期内积分并除以周期,得到 %20%5Clangle%20P_e(t)%5Crangle%3D%5Cfrac%7B1%7D%7BT%7D%5Cint_0%5ET%20P_e(t)%5Cmathrm%7Bd%7Dt%3D%5Cfrac%7B1%7D%7B4%7D%5Cleft(1%2B%5Cfrac%7B%5COmega2%7D%7B%5Comega2%7D%5Cright)%20

利用拉格朗日中值定理,存在一个介于$t=0$和$t=T$之间的$\tau$,使得%20%20%5Clangle%20P_e(t)%5Crangle%3DP_e(%5Ctau)%3D%5Cfrac%7B1%7D%7B4%7D%5Cleft(1%2B%5Cfrac%7B%5COmega2%7D%7B%5Comega2%7D%5Cright)%2B%5Cfrac%7B1%7D%7B4%7D%5Cleft(1-%5Cfrac%7B%5COmega2%7D%7B%5Comega2%7D%5Cright)%5Ccos(%5Comega%20%5Ctau)%20


%5Clangle%20P_e(t)%5Crangle%3D%5Cfrac%7B1%7D%7BT%7D%5Cint_0%5ET%20P_e(t)%5Cmathrm%7Bd%7Dt%3D%5Cfrac%7B1%7D%7BT%7D%5Cint_0%5ET%20%5Cfrac%7B1%7D%7B4%7D%5Cleft(1%2B%5Cfrac%7B%5COmega2%7D%7B%5Comega2%7D%5Cright)%2B%5Cfrac%7B1%7D%7B4%7D%5Cleft(1-%5Cfrac%7B%5COmega2%7D%7B%5Comega2%7D%5Cright)%5Ccos(%5Comega%20t)%5Cmathrm%7Bd%7Dt%5C%20%3D%5Cfrac%7B1%7D%7B4%7D%5Cleft(1%2B%5Cfrac%7B%5COmega2%7D%7B%5Comega2%7D%5Cright)%2B%5Cfrac%7B1%7D%7B4%7D%5Cleft(1-%5Cfrac%7B%5COmega2%7D%7B%5Comega2%7D%5Cright)%5Cfrac%7B1%7D%7BT%7D%5Cint_0%5ET%20%5Ccos(%5Comega%20t)%5Cmathrm%7Bd%7Dt%5C%20%3D%5Cfrac%7B1%7D%7B4%7D%5Cleft(1%2B%5Cfrac%7B%5COmega2%7D%7B%5Comega2%7D%5Cright)%2B%5Cfrac%7B1%7D%7B4%7D%5Cleft(1-%5Cfrac%7B%5COmega2%7D%7B%5Comega2%7D%5Cright)%5Cfrac%7B%5Csin(%5Comega%20T)%7D%7B%5Comega%20T%7D%20


利用各态历经假设,即认为在一个较长的时间内,原子的状态可以遍历所有可能的状态,那么可以用时间平均代替系综平均,即

%5Clangle%20P_e(t)%5Crangle%3D%5Cfrac%7B1%7D%7BT%7D%5Cint_0%5ET%20P_e(t)%5Cmathrm%7Bd%7Dt%3D%5Cfrac%7B1%7D%7BT%7D%5Cint_0%5ET%20P_e(%5Ctau)%5Cmathrm%7Bd%7D%5Ctau%3DP_e(%5Ctau)

由此得到 

%5Ccos(%5Comega%20%5Ctau)%3D%5Cfrac%7B%5COmega2%7D%7B%5Comega2%7D

由于%5Comega%20%5Cgg%20%5COmega,所以%5Ccos(%5Comega%20%5Ctau)接近于1,因此可以近似得到 %20%5Comega%20%5Ctau%3D2n%5Cpi%2B%5Cdelta%20其中$n$是整数,%5Cdelta是一个很小的角度。

将上式代入原子的态,得到

%20%7C%5Cpsi(%5Ctau)%5Crangle%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%5Cleft(1%2B%5Cfrac%7B%5COmega%7D%7B%5Comega%7D%5Cright)e%7B-i(%5Comega_0-%5Comega)(2n%5Cpi%2B%5Cdelta)%2F2%7D-%5Cleft(1-%5Cfrac%7B%5COmega%7D%7B%5Comega%7D%5Cright)e%7B-i(%5Comega_0%2B%5Comega)(2n%5Cpi%2B%5Cdelta)%2F2%7D%5Cright%5D%7Cg%5Crangle%2B%5Cfrac%7Bi%7D%7B2%7D%5Cleft%5B%5Cleft(1%2B%5Cfrac%7B%5COmega%7D%7B%5Comega%7D%5Cright)e%7B-i(%5Comega_0-%5Comega)(2n%5Cpi%2B%5Cdelta)%2F2%7D%2B%5Cleft(1-%5Cfrac%7B%5COmega%7D%7B%5Comega%7D%5Cright)e%7B-i(%5Comega_0%2B%5Comega)(2n%5Cpi%2B%5Cdelta)%2F2%7D%5Cright%5D%7Ce%5Crangle

由于%5Cdelta很小,可以忽略其对指数函数的影响,同时利用欧拉公式,得到 

%7C%5Cpsi(%5Ctau)%5Crangle%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%5Cleft(1%2B%5Cfrac%7B%5COmega%7D%7B%5Comega%7D%5Cright)e%7B-i(%5Comega_0-%5Comega)2n%5Cpi%2F2%7D-%5Cleft(1-%5Cfrac%7B%5COmega%7D%7B%5Comega%7D%5Cright)e%7B-i(%5Comega_0%2B%5Comega)2n%5Cpi%2F2%7D%5Cright%5D%7Cg%5Crangle%2B%5Cfrac%7Bi%7D%7B2%7D%5Cleft%5B%5Cleft(1%2B%5Cfrac%7B%5COmega%7D%7B%5Comega%7D%5Cright)e%7B-i(%5Comega_0-%5Comega)2n%5Cpi%2F2%7D%2B%5Cleft(1-%5Cfrac%7B%5COmega%7D%7B%5Comega%7D%5Cright)e%7B-i(%5Comega_0%2B%5Comega)2n%5Cpi%2F2%7D%5Cright%5D%7Ce%5Crangle%5C%20%3D%5Cfrac%7B1%7D%7B2%7De%7B-in(%5Comega_0-%5Comega)%5Cpi%2F2%7D%5Cleft%5B%5Cleft(1%2B%5Cfrac%7B%5COmega%7D%7B%5Comega%7D%5Cright)-(-1)n%5Cleft(1-%5Cfrac%7B%5COmega%7D%7B%5Comega%7D%5Cright)%5Cright%5D%7Cg%5Crangle%2B%5Cfrac%7Bi%7D%7B2%7De%7B-in(%5Comega_0-%5Comega)%5Cpi%2F2%7D%5Cleft%5B%5Cleft(1%2B%5Cfrac%7B%5COmega%7D%7B%5Comega%7D%5Cright)%2B(-1)n%5Cleft(1-%5Cfrac%7B%5COmega%7D%7B%5Comega%7D%5Cright)%5Cright%5D%7Ce%5Crangle%5C%20%3D%5Cbegin%7Bcases%7D%20%7Cg%5Crangle%20%26%20n%3D4k%5C%20%7Ce%5Crangle%20%26%20n%3D4k%2B1%5C%20-%7Cg%5Crangle%20%26%20n%3D4k%2B2%5C%20-%7Ce%5Crangle%20%26%20n%3D4k%2B3%5C%20%5Cend%7Bcases%7D

其中$k$是整数。

这个结果说明,在非共振场中,原子的态会在基态和激发态之间周期性地跳跃,每个周期为T%3D4%5Cpi%2F%5Comega,这种现象称为拉比振荡。



拉比震荡的评论 (共 条)

分享到微博请遵守国家法律