用放大镜将激光放大100倍,威力究竟有多强?结局果然不出所料!

激光产生原理
了解激光产生原理,我们必先了解物质的结构,与及光的辐射和吸收的原理。
{josimage}物质由原子组成。图一是一个碳原子的示意图。原子的中心是原子核,由质子和中子组成。质子带有正电荷,中子则不带电。原子的外围布满着带负电的电子,绕着原子核运动。有趣的是,电子在原子中的能量并不是任意的。描述微观世界的量子力学告诉我们,这些电子会处于一些固定的「能阶」,不同的能阶对应于不同的电
子能量。为了简单起见,我们可以如图一所示,把这些能阶想象成一些绕着原子核的轨道,距离原子核越远的轨道能量越高。此外,不同轨道最多可容纳的电子数目也不同,例如最低的轨道
(也是最近原子核的轨道)
最多只可容纳2个电子,较高的轨道则可容纳8个电子等等。事实上,这个过份简化了的模型并不是完全正确的,但它足以帮助我们说明激光的基本原理。
电子可以透过吸收或释放能量从一个能阶跃迁至另一个能阶。例如当电子吸收了一个光子时,它便可能从一个较低的能阶跃迁至一个较高的能阶
同样地,一个位于高能阶的电子也会透过发射一个光子而跃迁至较低的能阶
在这些过程中,电子吸收或释放的光子能量总是与这两能阶的能量差相等。由于光子能量决定了光的波长,因此,吸收或释放的光具有固定的颜色。
{josgoogle}
{josimage}
{jospagebreak}
当原子内所有电子处于可能的最低能阶时,整个原子的能量最低,我们称原子处于基态。图一显示了碳原子处于基态时电子的排列状况。当一个或多个电子处于较高的能阶时,我们称原子处于受激态。前面说过,电子可透过吸收或释放在能阶之间跃迁。跃迁又可分为三种形式﹕
1.自发吸收
电子透过吸收光子从低能阶跃迁到高能阶
2.自发辐射
电子自发地透过释放光子从高能阶跃迁到较低能阶
3.受激辐射
光子射入物质诱发电子从高能阶跃迁到低能阶,并释放光子。入射光子与释放的光子有相同的波长和相,此波长对应于两个能阶的能量差。一个光子诱发一个原子发射一个光子,最后就变成两个相同的光子
{josimage}激光基本上就是由第三种跃迁机制所产生的。图三显示红宝石激光的原理。它由一枝闪光灯,激光介质和两面镜所组成。激光介质是红宝石晶体,当中有微量的铬原
子。在开始时,闪光灯发出的光射入激光介质,使激光介质中的铬原子受到激发,最外层的电子跃迁到受激态。此时,有些电子会透过释放光子,回到较低的能阶。
而释放出的光子会被设于激光介质两端的镜子来回反射,诱发更多的电子进行受激辐射,使激光的强度增加。设在两端的其中一面镜子会把全部光子反射,另一面镜
子则会把大部分光子反射,并让其余小部分光子穿过﹔而穿过镜子的光子就构成我们所见的激光。
{josimage}产生激光还有一个巧妙之处,就是要实现所谓粒子数反转的状态。以红宝石激光为例
原子首先吸收能量,跃迁至受激态。原子处于受激态的时间非常短,大约
秒后,它便会落到一个称为亚稳态的中间状态。原子停留在亚稳态的时间很长,大约是
秒
或更长的时间。电子长时间留在亚稳态,导致在亚稳态的原子数目多于在基态的原子数目,此现象称为粒子数反转。粒子数反转是产生激光的关键,因为它使透过受
激辐射由亚稳态回到基态的原子,比透过自发吸收由基态跃迁至亚稳态的原子为多,从而保证了介质内的光子可以增多,以输出激光。
——来源:励光解芷容