欢迎光临散文网 会员登陆 & 注册

卫星数据处理(三)——SVD分析

2021-06-17 21:18 作者:Berton9407  | 我要投稿

(三)SVD分析

对于单一频率或单色平面波,无论电场E还是磁场B都可以写成:

C_0e%5E%7Bi%5Cleft(%20%5Coverrightarrow%7Bk%7D%5Ccdot%20%5Coverrightarrow%7Bx%7D-wt%20%5Cright)%7D.

其中,C_0代表初始时刻的E_0B_0。根据Faraday’s law,有:

%7B%5Cnabla%20%7D%5Ctimes%7BE%7D%3D-%5Cfrac%7B%5Cpartial%7BB%7D%7D%7B%5Cpartial%20t%7D.

则可以利用FFT变换式(%5Cnabla%3Dik%5Cfrac%7B%5Cpartial%7D%7B%5Cpartial%20t%7D%3D-iw)结合线性小扰动理论:

%7BE%7D%3D%7BE_0%7D%2B%7BE'%7D%3B%20%7BB%7D%3D%7BB_0%7D%2B%7BB'%7D

得到:%7Bk%7D%5Ctimes%20%7BE'%7D%3Dw%7BB'%7D。根据矢量叉乘的位置关系,看出波矢和磁场扰动有%7BB'%7D%5Ccdot%7Bk%7D%3D0

MVA分析利用磁场分量的协方差矩阵得到特征值和特征向量,同时可以画出磁场的矢端曲线图(hodographs),用来表征波动的极化特征。但要注意的是,最小方差分析基于信号频率极窄、波矢方向基本不随频率变化的假设。

对于波传播特性的另一种分析是基于多维频谱分析,不同于早期只用实部的McPherron et al. (1972)和只用虚部的Means (1972),Sanrolik et al. (2003)假设存在平面波的情况下,结合复数域的多维频谱矩阵,结合Ladreiter et al. (1995)提出的奇异值分解(singular value decomposition)方法,提高最小化过程,得出更合理的传播特性结果。主要过程:

  • 利用磁场信息经过谱分析得到多维频谱结果%5Cwidehat%7BB_i%7D%5Cleft(%20t%2Cf%20%5Cright)%20%5Cleft(%20i%3D1%2C%202%2C%203%20%5Cright)%20

  • 对于特定频率f_0和时刻t_0,都可以形成Hermitian频谱矩阵S_%7B3%5Ctimes3%7D,其中元素s_%7Bij%7D%3D%5Cwidehat%7BB_i%7D%5Cwidehat%7BB_%7Bj%7D%5E%7B*%7D%7D;

  • 根据复数元素构造矩阵A满足(R(%5Ccdot)%E5%92%8CIm(%5Ccdot)分别代表实部和虚部):

    A%3D%5Cleft(%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09R%5Cleft(%20S_%7B11%7D%20%5Cright)%20%5C%2C%5C%2C%20%20R%5Cleft(%20S_%7B12%7D%20%5Cright)%20%5C%2C%5C%2C%20%20R%5Cleft(%20S_%7B13%7D%20%5Cright)%5C%5C%0A%09R%5Cleft(%20S_%7B12%7D%20%5Cright)%20%5C%2C%5C%2C%20%20R%5Cleft(%20S_%7B22%7D%20%5Cright)%20%5C%2C%5C%2C%20%20R%5Cleft(%20S_%7B23%7D%20%5Cright)%5C%5C%0A%09R%5Cleft(%20S_%7B13%7D%20%5Cright)%20%5C%2C%5C%2C%20%20R%5Cleft(%20S_%7B23%7D%20%5Cright)%20%5C%2C%5C%2C%20%20R%5Cleft(%20S_%7B33%7D%20%5Cright)%5C%5C%0A%090%20%20%20-%5Cmathrm%7BIm%7D%5Cleft(%20S_%7B12%7D%20%5Cright)%20%5C%2C%5C%2C-%5Cmathrm%7BIm%7D%5Cleft(%20S_%7B13%7D%20%5Cright)%5C%5C%0A%09%5Cmathrm%7BIm%7D%5Cleft(%20S_%7B12%7D%20%5Cright)%20%5C%2C%5C%2C%20%20%20%200%20%20-%5Cmathrm%7BIm%7D%5Cleft(%20S_%7B23%7D%20%5Cright)%5C%5C%0A%09%5Cmathrm%7BIm%7D%5Cleft(%20S_%7B13%7D%20%5Cright)%20%5C%2C%5C%2C%20%20%5Cmathrm%7BIm%7D%5Cleft(%20S_%7B23%7D%20%5Cright)%20%5C%2C%5C%2C%20%20%20%20%200%5C%5C%0A%5Cend%7Barray%7D%20%5Cright)%20%3B

  • A进行奇异值分解得到特征值(%5Clambda%20_%7Bs1%7D%5Cgeqslant%20%5Clambda%20_%7Bs2%7D%5Cgeqslant%20%5Clambda%20_%7Bs3%7D)和特征向量e_%7Bsi%7D;

  • 椭率%5Cvarepsilon%20_s、平面波参量F_s和波矢-背景磁场夹角%5Ctheta_%7Bs-kB_0%7D表达式有:

    %5Cvarepsilon%20_s%3D%5Cfrac%7B%5Clambda%20_%7Bs2%7D%7D%7B%5Clambda%20_%7Bs1%7D%7DF_s%3D1-%5Csqrt%7B%5Cfrac%7B%5Clambda%20_%7Bs3%7D%7D%7B%5Clambda%20_%7Bs1%7D%7D%7D%5Ctheta%20_%7Bs-kB_0%7D%3D%5Ccos%20%5E%7B-1%7D%5Cleft(%20%7Be_%7Bs3%7D%7D%5Ccdot%20%5Cleft%5B%200%2C0%2C1%20%5Cright%5D%20%2F%7C%7Be_%7Bs3%7D%7D%7C%20%5Cright)%20

其中,平面波参量近似为1时才满足原假设,若小于1则可考虑其不服从平面波假设的前提条件。另外,注意区分椭率表达式和归一化约化磁螺度(normalized reduced magnetic helicity)%5Csigma_m,其更接近圆偏振度D_%7Bc2%7D的定义,且无法得到更多的波动性参量。

%5Csigma%20_m%5Cleft(%20t%2Cf%20%5Cright)%20%3D%5Cfrac%7B2%5Cmathrm%7BIm%7DS_%7B12%7D%5Cleft(%20t%2Cf%20%5Cright)%7D%7B%5Csum%7B%5Cmathrm%7Btr%7D%5Cleft%5B%20S%5Cleft(%20t%2Cf%20%5Cright)%20%5Cright%5D%7D%7D%3D%5Cfrac%7B2%5Cmathrm%7BIm%7D%5Cleft(%20S_%7B12%7D%20%5Cright)%7D%7BS_%7B11%7D%2BS_%7B22%7D%2BS_%7B33%7D%7D.

有别于Sanrolik et al. (2003)基本不考虑噪声水平的情况,Taubenschuss & Sanrolik (2019)从原理上进行方法改进,包括100%极化的波动J_p、波动噪声J_%7Bn1%7D和各向同性的仪器及背景噪声J_%7Bn2%7D。满足:

J%5Cequiv%20J_p%2BJ_n%3DJ_p%2BJ_%7Bn1%7D%2BJ_%7Bn2%7D%0A%5C%5C%0A%3D%5Cleft(%20%5Cbegin%7Bmatrix%7D%0A%09J_%7B11%7D%26%09%09J_%7B12%7D%26%09%090%5C%5C%0A%09J_%7B12%7D%5E%7B*%7D%26%09%09J_%7B22%7D%26%09%090%5C%5C%0A%090%26%09%090%26%09%090%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright)%20%2B%5Cleft(%20%5Cbegin%7Bmatrix%7D%0A%09%5Ctilde%7Ba%7D%26%09%090%26%09%090%5C%5C%0A%090%26%09%09%5Ctilde%7Ba%7D%26%09%090%5C%5C%0A%090%26%09%090%26%09%090%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright)%20%2B%5Cleft(%20%5Cbegin%7Bmatrix%7D%0A%09c%26%09%090%26%09%090%5C%5C%0A%090%26%09%09c%26%09%090%5C%5C%0A%090%26%09%090%26%09%09c%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright)%20.

当然,一般情况下,J_p并不是100%偏振的,由圆偏振和线偏振共同组成,基于去除元素值为0的矩阵J_%7Bp2%5Ctimes2%7D,其斯托克斯参量(Stocks parameters)可表示为:

S%3DJ_%7Bp11%7D%2BJ_%7Bp22%7D%3B%20Q%3DJ_%7Bp11%7D-J_%7Bp22%7D%3B%20U%3DJ_%7Bp12%7D%2BJ_%7Bp12%7D%5E%7B*%7D%3B%20V%3Di%5Cleft(%20J_%7Bp12%7D%5E%7B*%7D-J_%7Bp12%7D%20%5Cright)%20.

总偏振度、线偏振度和圆偏振度分别用D_%7Bp2%7DD_%7Bl2%7DD_%7Bc2%7D计算,表达式分别为:

%5Cfrac%7B%5Csqrt%7BQ%5E2%2BU%5E2%2BV%5E2%7D%7D%7BS%7D%5Cfrac%7B%5Csqrt%7BQ%5E2%2BU%5E2%7D%7D%7BS%7D%5Cfrac%7BV%7D%7BS%7D。对于圆偏振度的描述,可以看出J_%7Bp12%7D有正负性,可以用来表征极化方向,正代表右旋,负代表左旋。由此,可以在椭率计算中加入其符号变量,,替代相关的圆偏振信息。若考虑噪声,Taubenschuss & Sanrolik (2019)给出以下计算过程:

  • 利用磁场信息经过谱分析得到多维频谱结果%5Cwidehat%7BB_i%7D%5Cleft(%20t%2Cf%20%5Cright)%20%5Cleft(%20i%3D1%2C%202%2C%203%20%5Cright)%20

  • 对于特定频率f_0和时刻t_0,都可以构成复数频谱矩阵J_%7B3%5Ctimes3%7D,元素计算同无噪声下的S_%7B3%5Ctimes3%7D;

  • J_%7B3%5Ctimes3%7D采用奇异值分解得到特征值%5Clambda%20_%7B1%7D%5Cgeqslant%20%5Clambda%20_%7B2%7D%5Cgeqslant%20%5Clambda%20_%7B3%7D及其对应的特征向量e_i;

  • J_%7B3%5Ctimes3%7D的实部再采用奇异值分解得到特征值%5Clambda%20_%7Br1%7D%5Cgeqslant%20%5Clambda%20_%7Br2%7D%5Cgeqslant%20%5Clambda%20_%7Br3%7D及其对应的特征向量e_%7Bri%7D;

  • 椭率%5Cvarepsilon%20_J、平面波参量F_J和波矢-背景磁场夹角%5Ctheta_%7BJ-kB_0%7D表达式有:

    %5Cvarepsilon%20_J%3D%5Csqrt%7B%5Cfrac%7B%5Cleft(%20%5Clambda%20_%7Br2%7D-%5Clambda%20_2%20%5Cright)%7D%7B%5Cleft(%20%5Clambda%20_%7Br1%7D-%5Clambda%20_2%20%5Cright)%7D%7D%5Ccdot%20%5Cmathrm%7Bsign%7D%5Cleft(%20%5Cmathrm%7BIm%7D%5Cleft(%20J_%7Bp12%7D%20%5Cright)%20%5Cright)%20F_r%3D1-%5Csqrt%7B%5Cfrac%7B%5Clambda%20_%7Br3%7D%7D%7B%5Clambda%20_%7Br1%7D%7D%7D%5Ctheta%20_%7Br-kB_0%7D%3D%5Ccos%20%5E%7B-1%7D%5Cleft(%20%7Be_%7Br3%7D%7D%5Ccdot%20%5Cleft%5B%200%2C0%2C1%20%5Cright%5D%20%2F%7C%7Be_%7Br3%7D%7D%7C%20%5Cright)%20

此时,总偏振度D_%7BpJ%7D%3D%0A%5Cfrac%7B%5Cmathrm%7Btr%7D%5Cleft(%20J_p%20%5Cright)%7D%7B%5Cmathrm%7Btr%7D%5Cleft(%20J%20%5Cright)%7D%3D1-%5Cfrac%7B%5Cmathrm%7Btr%7D%5Cleft(%20J_n%20%5Cright)%7D%7B%5Cmathrm%7Btr%7D%5Cleft(%20J%20%5Cright)%7D%3D%5Cfrac%7B%5Clambda%20_1-%5Clambda%20_2%7D%7B%5Clambda%20_1%2B%5Clambda%20_2%2B%5Clambda%20_3%7D%5Cequiv%20D_%7Bp3e%7D

其中,tr(%5Ccdot)代表矩阵的迹,D_%7Bp3e%7D由Eliis et al. (2005)经八个三维盖尔曼(Gell-Mann)矩阵替代二维泡利(Pauli)自旋矩阵得到的偏振结果。此外,还能根据D_%7BpJ%7D得到相关的信噪比(signa to noise ratio,SNR),满足:

SNR%3D%5Cfrac%7B%5Cmathrm%7Btr%7D%5Cleft(%20J_p%20%5Cright)%20%2B%5Cmathrm%7Btr%7D%5Cleft(%20J_%7Bn1%7D%20%5Cright)%7D%7B%5Cmathrm%7Btr%7D%5Cleft(%20J_%7Bn2%7D%20%5Cright)%7D%3D%5Cfrac%7BJ_%7Bp11%7D%2BJ_%7Bp22%7D%2B2%5Ctilde%7Ba%7D%7D%7B3c%7D%3D%5Cfrac%7BD_%7BpJ%7DS%2B%5Cleft(%201-D_%7BpJ%7D%20%5Cright)%20S%7D%7B3c%7D.

基本上,事件要挑选尽量高的SNR(不小于10),这样可以有效避免噪声淹没信号,得到的结果更加可靠。对于实际磁场信号的处理,通常先取一定长度的数据得到时间段内较为可靠的背景磁场B_0,再进行Magnetic-Field Aligned磁场变换,此变换则可将扰动大致分在平行于背景磁场的压缩(compressional)扰动和垂直于背景磁场的横向(transverse)扰动,且背景磁场的单位矢量方向为[0,0,1]。接着,运用小波分析得到多维频谱结果。此时,由于在小波分析的过程中,会有主动窗口的选择效应,因此噪声水平往往会在一定低的水平,此时SNR水平往往显得突出,得到的平面波参量也更接近于1,符合平面波的前提假设条件,波动分析的结果也更加准确。

卫星数据处理(三)——SVD分析的评论 (共 条)

分享到微博请遵守国家法律