拓端tecdat|R语言回测交易:根据历史信号/交易创建股票收益曲线
原文链接:http://tecdat.cn/?p=23808
原文出处:拓端数据部落公众号
本文介绍如何根据历史信号/交易制作股票曲线。
让我们以MARKET TIMING与DECISION MOOSE的历史信号为例,为该策略创建股票曲线。
#*****************************************************************
# 加载信号
#*****************************************************************
# 提取交易历史
temp = extract.table.from.webpage(txt, 'Transaction History', has.header = F)
temp = trim(temp[-1,2:5])
colnames(temp) = spl('id,date,name,equity')
tickers = toupper(trim(gsub('\\)','', sapply(temp[,'name'], spl, '\\('))))[2,]
load(file=filename)
#plota(make.xts(info$equity, info$date), type='l')
#*****************************************************************
# 加载历史数据
#*****************************************************************
tickers = unique(info$tickers)
# 加载保存的代理原始数据
load('data/data.proxy.raw.Rdata')
# 定义现金
tickers = gsub('3MOT','3MOT=BIL+TB3M', tickers)
#飞毛腿新亚洲基金(SAF),并入DWS新兴市场股票基金
tickers = gsub('SAF','SAF=SEKCX', tickers)
#添加虚拟股票,以保持交易日期,如果它们与数据不一致的话
dummy = make.stock.xts(make.xts(info$equity, info$date))
getSymbols.extra(tickers, src = 'yahoo', from = '1970-01-01', env = data, raw.data = data.proxy.raw, auto.assign = T)
# 可选择未被Adjusted捕获的分叉点
#data.clean(data, min.ratio=3)
for(i in ls(data)) data[[i]] = adjustOHLC(data[[i]], use.Adjusted=T)
#print(bt.start.dates(data))
data$dummy = dummy
#*****************************************************************
# 设置
#*****************************************************************
prices = data$prices
models = list()
#*****************************************************************
#代码策略,SPY - 买入和持有
#*****************************************************************
data$weight[] = NA
data$weight$SPY = 1
models$SPY = bt.run.share(data, clean.signal=T, silent=T)
#*****************************************************************
# 创建权重
#*****************************************************************
weight = NA * prices
for(t in 1:nrow(info)) {
weight[info$date[t],] = 0
weight[info$date[t], info$ticker[t]] = 1
}
#*****************************************************************
#创建报告
#******************************************************************
plota.matplot(scale.one(data$prices),main='Asset Perfromance')

plot(models, plotX = T)

print(plotbt))

m = 'decisionmoose'
plotbmap(models[[m]]$weight, name=m)


最受欢迎的见解
1.R语言对S&P500股票指数进行ARIMA + GARCH交易策略
2.R语言改进的股票配对交易策略分析SPY—TLT组合和中国股市投资组合
3.R语言时间序列:ARIMA GARCH模型的交易策略在外汇市场预测应用
4.TMA三均线期指高频交易策略的R语言实现
5.r语言多均线量化策略回测比较
6.用R语言实现神经网络预测股票实例
7.r语言预测波动率的实现:ARCH模型与HAR-RV模型
8.R语言如何做马尔科夫转换模型markov switching model
9.matlab使用Copula仿真优化市场风险