【开题报告】浦东滴水湖地区公交查询系统的设计与实现(上海建桥学院开题报告模板)

一、开题报告
课题背景和意义:
随着人们生活水平的提高,人们更加追求在外出旅行上的品质,然而在纵横交错的路线中,公交是最常用的交通工具,但是我国城市公交系统本身处于一个相对落后的水平,上海作为一个正在深度和广度方面飞速地发展着的大城市,交通更是拥挤、交通路线越来越繁琐,各个地区的公交数据非常庞大,造成无法快速、准确的查找到所需公交信息等问题,给市民们带来很大的不便。
公交信息管理系统作为城市公众信息服务平台的一部分,它的建立不仅为广大公众的出行提供所需的公交信息,而且对于缓解城市的交通压力和降低城市的环境污染都有很大意义。近年来由于计算机编程技术和Internet技术的发展,国内外各大城市纷纷推出了基于Internet的城市公交查询系统。这些查询系统的推出为人们获得所需的公交信息提供了方便。为此本系统将针对浦东新区滴水湖地区的公交查询信息进行优化完善,减少路线重复,为人们提供方便出行的系统。
本系统提供浦东新区滴水湖这块区域的公交查询,滴水湖附近有四所大学,人群出行量极其大,每当新生报到时他们可能面临多种问题,如周边有什么娱乐设施、购物中心、各种交通路线等,为了更加方便外来人群对滴水湖的了解,开发一个操作简单、查询方便、功能齐全的公交查询系统很有必要。
研究的主要内容:
结合浦东滴水湖地区的公交情况和周边景点,设计出合理的公交路线查询系统,方便管理该地区的公交信息,最高效的利用该地的公交资源。系统主要进行两方面设计:一是面向用户的前台系统;二是面向管理员的后台系统。
前台系统主要实现路线的查询,采用公交优化算法对数据进行优化,能够实现两点之间的换乘最少的查询,换算出最合理的路线方式,更加方便用户的出行。其次采用HTML+CSS和JavaScript技术相结合的手法对页面进行设计,页面的设计理念以简洁为主并结合心理学和美学理论进行感官体验设计,清晰展示信息的主次层次及任务流程的先后顺序,帮助用户在愉悦的视觉环境中完成查找方向。
后台系统采用PHP连接 My SQL数据库实现网站页面后台的部分管理功能,管理员具有新增、删除、修改公交车信息、站点信息的功能。
整个系统首先进行界面设计,然后部署数据库逻辑表单,之后两者连接设计后台功能。
研究方法(或技术路线):
1. 研究方法:通过查阅文献充分利用图书馆资源,查找相关技术应用进行研究。
调查浦东滴水湖地区的公交名,各个换乘站点及途径的地点,并且对部分站点周边景点进行调研。
技术路线:使用B/S模式(浏览器/服务器)三层结构,JDK Java环境进行开发,MySQL作为数据库,客户端使用浏览器运行程序,PHP编码技术。最终根据系统开发成果撰写毕业论文。
预期结果:
(1) 完成主页面的设计与制作。
(2) 页面显示:包括普通用户界面和管理员界面。
(3) 功能实现:普通界面能够进行路线查询、周边景点查询。
(4) 完成系统数据库的搭建、信息的录入。
(5) 管理员可实现路线、站点、车次的新增、删除、修改。
(6) 系统进行运行测试,各个页面顺利跳转、无错误显示并且能够正确查询。
根据完成的系统,整理资料结合参考文献撰写毕业论文。
进度计划:
2016年7月:确定课题、进行调研、搜集相关资料、查阅文献,完成开题报告。
2016年9月26日前:完成毕业设计任务书。
2016年10月20日:毕业设计开题报告答辩。
2016年11月23日前:实现系统所有功能,并完成系统的调试、运行及维护,并准备中期检查。
2016年11月24日:毕业设计进行中期答辩。
2017年12月24日前:整理毕业设计过程资料、撰写毕业论文。
2017年1月10日前:毕业论文进行查重、根据评阅教师意见修改论文。
2017年1月12日:毕业论文答辩(定稿的论文打印稿与答辩PPT)。
二、文献综述
公交查询系统分析
课题背景:
随着人们生活水平的提高,人们更加追求在外出旅行上的品质,然而在纵横交错的路线中,公交是最常用的交通工具,但是我国城市公交系统本身处于一个相对落后的水平,上海作为一个正在深度和广度方面飞速地发展着的大城市,交通更是拥挤、交通路线越来越繁琐,各个地区的公交数据非常庞大,造成无法快速、准确的查找到所需公交信息等问题,给市民们带来很大的不便。
公交信息管理系统作为城市公众信息服务平台的一部分,它的建立不仅为广大公众的出行提供所需的公交信息,而且对于缓解城市的交通压力和降低城市的环境污染都有很大意义。近年来,由于计算机编程技术和Internet技术的发展,国内外各大城市纷纷推出了基于Internet的城市公交查询系统。这些查询系统的推出为人们获得所需的公交信息提供了方便。但鉴于当时技术和开发人员自身能力的限制这些公交查询系统都或多或少地存在着一些问题。为此本系统将针对浦东新区的公交信息进行优化完善。
公交查询现状分析
目前,国内外公交信息管理即公交查询系统都发展到了一个比较成熟的阶段,无论是从理论上还是从技术上都比较成熟。发达国家对城市公交查询的研究比较早,技术发展的已经相当成熟。
国外公交信息管理系统更是早已实现了智能化、信息化、社会化。据相关资料了解,国外的公交信息管理系统现在已经将GIS、GPS、RS技术集合到公交查询系统中。许多国际化大都市都非常重视公交信息服务系统的管理和发展在发达国家,公交查询系统发展的目的是提供准确、可靠、及时的公交信息服务,以吸引更多的旅行者使用城市公交查询系统这一工具,从而促进城市公共交通服务的发展、完善。发达国家的公交查询系统的研究、简历、测试的大部分费用由政府部门负责承担,而用户和国家公交企业是该系统的最终受益者和使用者。
我国城市公交信息系统的发展起步较晚,城市公共交通系统对于信息化的管理系统应用不够完善,公交系统的研究和开发还需要一个漫长的过程。普遍存在的现象是:许多乘客可以获得信息的方式以及信息量较少,且不能保证查询信息的可靠性和完整性,也没有负责发布信息和管理信息的专门机构。随着互联网技术的发展,许多网站陆续地推出公交查询系统,现阶段国内的公交信息管理系统也结合了很多技术,国内公交查询系统也正在向将GIS、GPS、RS技术相结合的方向发展。
课题研究的主要内容:
系统分为前台和后台两大系统,在前台设计时对不同文化背景不同环境因素下的用户的上网目的、行为习惯和心理反应进行考虑 , 研究如何让用户更方便快捷地获取相关信息、简单高效地完成任务 ,不断提高网站的情感体验, 让用户感到舒适 、友好、 可靠, 实现网站可用性和功能性目标。以及对用户心理方面的分析,让用户体验到本系统操作流程的简化。
在后台系统设计时在数据库的开发和维护中,查询的优化设计可以提高系统性能,特别是对于经常用于查询数据量大的数据库系统更显得重要。SQL查询优化的实质就是在结果正确的前提下,用优化器可以识别的语句,充分利用索引,减少表扫描的I/O次数,尽量避免表搜索的发生。优化的方面除充分利用硬件性能外,还可采用软件方法来解决。系统管理员只有正确观察和分析系统运行中提供的各种信息,小红分结合实际应用特点,才能合理制定出良好的优化策略,实现快速、高效是数据查询和应用分析,同时也使硬件资源得到充分的发挥[1]。利用数据链接对管理员登录的账号密码的准确性登录,管理员可进行多项操作包括新增、删除、修改路线、站点和车次,还可以新增数据库管理员的账号及密码,在管理员的管理下尽量减少公交路线信息数据的出错。
系统的功能决定本系统的存活时间,因此用户体验很重要。本系统为出行者提供更加方便的查询方式,设计时在公交站点、线路等公交数据的分类、合并和抽象的基础上,进行了算法的分析、设计了路径最短的最优路径算法。因此大多数是以“空间距离”最短作为第一考虑因素,这样能够使系统更方便,更好满足生活中人们的实际需求并提高查询效率。在系统首页面有路线查询模块,用户可以根据单个公交名称查询该公交所有的站点名称,还可以查询某一公交车的首班车和末班车时间,方便出行者规划时间,减少在时间上安排错误导致的损失。最重要的是本系统可以根据用户输入的出发地和目的地来换算出路径最短的推荐路线,为出行者尽可能的节省时间,对于过来游玩者还能够提供周边一带的景点,做到不遗漏任何一个可以玩的景点。
公交路线查询系统采用基于n 次公交换乘的算法,公交换乘算法大多是以“空间距离”最短作为第一考虑要素,如 Dijkstra 算法,遗传算法,A* 算法和燃烧算法等算法,然而有文献对乘客的出行心理进行调查分析,其结果表明,“换乘次数”是大部分公交乘客在选择出行方案时首先考虑的因素,“出行距离最短”为第二目标。本论文在分析和总结公交站点、 公交线路等公交数据及出行乘客的心理特点的基础之上,采用了了基于 n 次公交换乘的算法,使系统更方便,更好的满足了生活中人们的实际需求和提高了查询的效率。整个最少换乘算法的思想是一个递归的过程,从搜索经过起点站或目的站点的线路开始,由线路查找该线路经过的所有站点,再从这些站点查找经过它们的所有线路,不断迭代,直至找到终点站为止。
系统功能结构如下图所示:

系统开发相关技术:
采用PHP、Apache、My SQL支持多线程、多用户的关系数据库管理系统,网站在开发过程中主要在B/S的三层体系中完成,即页面显示、业务逻辑层以及数据库访问等单个相对独立的层面。
在B/S模式下,用户工作界面是通过WWW浏览器来实现的,极少部分事务逻辑在前端实现,但是主要事务逻辑在服务器实现,这样简化了客户端电脑载荷,减轻了系统维护与升级的成本和工作量,降低了用户的总体成本。
本课题前台显示页面采用HTLM、DIV+CSS、JavaScript技术相结合,页面更加吸引用户,显示更加清晰,让用户在第一瞬间就能找到自己想要操作的步骤。DIV+CSS的使用缩减了代码,并提高页面的浏览速度,结构更加清晰,兼容性更加好。JavaScript具有交互性,能够包含更多活跃的元素,它是在客户机上执行的,并能提高网页的浏览速度和交互能力。 JS使有规律地重复的HTML文段简化,减少下载时间。它能及时响应用户的操作,对提交表单做即时的检查,无需浪费时间交由 CGI 验证。
后台访问数据层的主要功能就是负责好各个环节对数据库的访问工作,在整个过程中,开展最多的是对数据的修改、查找及删除等操作,合理的数据库结构设计可以提高数据库存储的效率,保证数据的完整性和一致性。My SQL是以一个客户机/服务器结构的实现,存储数据库内容,通过PHP连接数据库,数据库是以关系模型为基础的数据库,是根据表、记录和字段之间的关系进行组织和访问的一种数据库,它通过若干个表(Table)来存取数据,并且通过关系(Relation)将这些表联系在一起,关系数据库提供了成为机构化查询语言(SQL)标准接口,该接口允许使用多种数据库工具和产品。
本课题的特点及实施意义:
浦东新区滴水湖地区人员聚集比较密集,该地区是由四所大学组成的大学城,再加上周边附近居民区,人员流动比较大,设计本系统主要是为了能够给同学们和当地市民提供一个良好的出行环境,在查询路线的同时还提供相关周边景点以供参考,滴水湖是一个比较偏僻的地区,离市中心等游玩场地相对较远,出行极其不方便,但是滴水湖周边也有不少的游玩地点例如烧烤区,海滩等等,为此充分利用当地环境,了解周边环境,规划统计游玩地段是很有必要的,本系统对于不管是当地人还是其他外来者都提供一个完善的服务。 本系统操作简单,功能基本完善,可以解决大部分人出行困难的问题。
参考文献:
[1]邹琼.浅谈数据库设计中范式的应用[J].湖北经济学院学报:人文社会科学版,2011年8卷11期
[2]郝琳琳.基于.NET的公交换乘查询系统的设计与实现[J].信息科技.计算机软件及计算机应用,2015.08
[3]王健、刘少华.公交乘换分析的算法设计与实现[J].科技信息,2010年18期
[4]张磊.公交查询系统的设计与实现[J].信息与电脑,2013年08期
[5]沈颖、宋文强.数据库系统中SQL 语句优化[J].电脑知识与技术,2009年18期
[6]朱征宇等.网站界面设计用户体验[J] . 重庆理工大学学报,2010年 08期
[7]余帝.探究动态网站设计中PHP技术的应用[J].电子制作,2015,24:50
[8]杨菲.“PHP程序设计”项目课程的开发与实践[J].电脑知识与技术,2015,26:132-133
[9]马毓.基于PHP的电子商务网站的设计与实现探讨[J].科技展望,2015,36:19
[10]崔绒花.动态网页设计与实现[J].软件导刊,2013,11:79-81
[11] Lucia Janušová、Silvia Čičmancová. Improving Safety of Transportation by Using Intelligent Transport Systems[J]. Procedia Engineering, 2016, Vol.134
三、文献翻译
智能交通系统和行人系统
摘要
本文概述了过去的发展和在行人交通智能运输系统的执行情况。从最近的发展工程和发展智能交通系统的方法,概述了现有的实现智能交通系统在行人交通技术中的应用,在克罗地亚共和国以及在其他国家提出了一些可行性解决方案。作为在智能交通系统中最重要的集成系统功能,介绍了在网络中的定位行人,行人指导(特别是盲人及低视力的人和坐轮椅的人)、提供旅行信息,等等。特别重点的是保护该地区的行人交通(避免发生事故)使用安装方便携带的车辆和嵌入式车辆的道路基础设施。并已指出行人交通设计在未来的智能交通体系中的意义。
关键词:智能交通系统,行人交通,行人诱导,实时信息,交通安全
1. 1.介绍
步行是每一个运动的基础,无论是作为主要的模式,还是在复杂的多模态运动链中。任何人的运动都是通过步行的开始和结束完成的,这意味着它包含在每一个交通模式中。
在运动时,行人和车辆往往在同一平面因此会遇到许多问题。行人会遇到交通事故,噪音,废气的影响而浪费掉时间。为了确保有平等的条件,所有交通参与者都应该以同样的方式对待。支持任何交通方式以牺牲另外一个国家作为代价, 最终通过非功能性的和非一般的流动效率来解决。世界上的智能交通系统的解决方案,包括同样的用户服务的行人。从这个意义上说,最大的改善是在日本,在那里,人们支持智能交通系统并已经脱离普通模式作为一个单独的开发区。
通过应用智能交通系统的方法来改善交通可以提高服务质量,并提高行人交通安全的质量来进行改进。在这里, 特别重要的是其在行人诱导和避免行人车辆事故的可能性。作为集成子系统在其内的最重要的功能,重点是在网络中的行人定位的可能性,提供旅行信息尤其是盲人为了让他们避免危险点,指导人在轮椅上以及使用的设备安装在车辆和行人保护埋在路下。本文展示了这种相对较新的方法来提高人们的流动性的基本原则和技术。
2.智能运输系统的基本特征和发展
通常,在更广泛的职业共同体中人们会误解它认为它是现有的部分应用路远程解决方案代表。这是不现实的,因为它是个人的远程信息处理系统和信息处理的先进的算法支持的整合,一个可以谈论智能交通系统的范例。由信息和电信设备升级的交通系统已收到智能属性,在未来的解决方案中,他们预计能够实现学习的功能,以及推理和适应交通环境的能力。
智能交通系统的发展来源根据是建筑结构的独立性。体系结构的贡献是至关重要的,在系统设计的初始阶段时,用户的需求和可能的解决方案必须被定义和协调,从各自的行业,比如建筑,电信,电子等的标准和建议来定义的。由于它的体系结构代表了未来系统的结构层次,它必须预见未来的发展,来使用不同的设备。国家建筑创作是估计需要1-2年来设计,地方区域需要6-12个月。国家的建筑创作需要政府管理部门、科研机构、旅游机构、地方金融社区、网络运营商、运输服务商(业主)和其他感兴趣的利益相关者的参与。在未来的框架的发展,智能交通系统架构的参与者将是高度专业化,有创意和有远见的。
由于规模大小在开发和实施干预中的复杂性,智能交通系统的引入必须有条不紊地准备和管理。过渡国家在介绍智能交通系统的工作原理时通常是使用按部就班的原则。现有的远程设备要符合未来标准要求并且要持续升级。可能发生的安装设备不兼容问题和无法升级问题。这些升级中特殊的实际问题是,那些不愿意在获得回报以前改变它的投资者们。
当今世界上大多数发达国家都有一个国家级的建筑,如美国、日本、澳大利亚等。在欧盟存在着一个重要的问题就是关于如何定义一个独特的智能交通系统的体系结构。在这里,一个特殊的问题就是一些成员国已经开始了自己的发展。以下工程是众所周知的:法国智能交通体系结构框架,挪威、意大利建筑远程运输系统,芬兰的泰勒马克、捷克共和国团队项目、奥地交通通讯系统利。瑞典、西班牙、瑞士、斯洛文尼亚、斯洛伐克、波兰、匈牙利等国家。智能交通系统体系结构正在发展和研究阶段。英国还没有确定一个独特的国家建筑,但已采取措施来统一其区域架构。欧盟委员会为欧洲确定一个特色建筑带来了许多的措施和建议。因此,在1994年,它给智能交通系统提出建筑方案,题名为系统架构和交通控制集成,提出了大量的措施以改善道路基础设施为了提高安全和运输效率。一个在1996的工程修改了计划安排,并升级铁路,水和空中交通的系统架构。欧洲委员会一直在继续研究,并在1998制定了一个基于卫星检查系统的欧洲网络所需的梯形结构的草案。到2000年1月,工程已经被修改过好多次,一直在扩大和改进,它被认为是欧洲建筑“欧洲框架结构”的新项目的前身。今天有两个欧洲建筑的项目在积极跟进,他们是frame-net和frame-s。会提出一系列欧洲委员会关于分歧的协调和国家建筑在欧洲及全世界的不兼容的建议。参照文献,介绍了它的体系结构的基本组成部分。不考虑远程信息处理设备功能性连接的技术问题会导致出错。它可能发生已安装的设备不提供预期的服务或这些信息不是给那些需要他们的人。这样的技术放在没有沟通的岛屿上,可能会使成本成倍增加并限制他们的使用。为了尽量减少不良的解决方案产生的风险,应注意以下要求:
——兼容性,这意味着软件支持或系统中的设备可以被修改或升级,系统在持续运行时服务质量不会中断;
——可扩展性,相似于兼容性,它意味着系统在更多的工作和新的任务的情况下能够顺利扩展,包括升级设备和软件支持;
——互操作性是两个或多个系统之间交换和使用的交换信息的能力(IEEE定义)。互操作性问题,特别是在不同的地区或国家能够连接不同的运营商或系统,在不同的国家,通过使用智能卡来收费票价或停车费。在这种情况下,有必要为行政和财务流程的标准采取协调技术。这也可能意味着一个共同的架构或他们的部分的发展;
3.智能交通系统在行人交通中的实现
通过使用先进的技术,代表了经典的交通工程的升级,所有的行人的新的价值观,特别是对那些有特殊需要的人必须提供无障碍运动。欧洲联盟的成员国颁布了人身法,如果有身体残疾或老年痴呆,假设这些对日常社会生活造成障碍。将会对智能交通系统进行改进,其使用通常通过以下指标表示:
——缩短旅行时间
——减少旅行成本
——减少事故的数量
——减少对环境的负面影响
——增加行人的舒适和满足感
——增加容量
——发展工业
一些所提到的指标可以很容易地量化,而对于更复杂的基于模糊方法和人工神经网络的各种估计方法会被使用。
3.1行人的行为和要求
为了更好地了解用户的要求,有必要收集有关他们的年龄,性别,大小,运动的目的,医疗条件等。为了分析这些数据的统计研究方法,智能算法的预测(分析趋势)和各种方法识别典型的样本(支持向量的方法,人工神经网络等)的使用。由于行人流量也包括有特殊需要的人,他们的要求也必须考虑。基于明确的要求可以定义数据流和功能进行远程信息处理设备的正确选择来解决用户的要求。在交通上有一定困难的行人可以分为两种:
——在广义上指儿童,老年人,孕妇,拿重行李的人和推婴儿车的人;
——在狭义上指身体残疾,低视力的人,受损的听力和精神障碍的人。
上述组中的每一个都有一个特定的行为,孩子们会有突然反常现象,因此除了由智能交通系统提供的解决方案外他们还需要一个成人看管。一些身体不灵活的老年人他们需要更多的时间来过马路,他们反射弧缓慢并且视力和听力弱,记忆力差。盲人会用棍子和导盲犬来引导自己,通过触摸和听觉定位自己。他们需要更多的时间来过马路,他们可能在交叉路口迷失自己,在交通过程中听力损失并不是唯一障碍,还有视力障碍。
这些用户主要依靠视觉指标的问题,他们需要大的可视性领域和一个没有视觉障碍物的环境。那些有心理困难,如对信息的观察、识别、理解、解释和反应的可能性有限的人。通常他们不认识,因此推荐使用的图片、符号和颜色为交通标志。例如,使用一个行人动画的信号指示器(信号控制交叉口)比写一个“GO”字来的好。
基于对行人在交通中的行为和他们的要求的详细分析,也是有可能找到合适的解决方案,从而满足用户。一方面,有效的连接用户的要求并提供解决方案,在另一方面,在很大程度上取决于可用的信息的质量。
3.2定位行人
对于一个更有效运作的行人交通,连续收集和处理的实时数据的交通是必要的。因此,特别重要的是行人、车辆和道路的综合连接成一个单一的信息和电信网络。基于当前行人和车辆在道路上的位置,改善行人交通流的指导和安全是有可能的。它提供了三个重要的可能性,包括定位,映射(分配位置的地图),系统和环境之间的组件不属于系统本身的组件之间的通信。定位即精确测定在地球的任何对象的位置(陆地、海洋、空气–空间接近地球)在任何时刻,以及对当前位置和移动物体的卫星导航系统速度的测定,主要是GPS(全球定位系统)。当今除了军事用途作为系统开发的原动力外,GPS接收机也用于日常生活,包括定位交通及交通运输手段控制、重装机械化和物流单元(托盘、容器),对旅游线路的规划、报告和交通事故分析等。利用GIS技术(地理信息系统)对某网络或区域的行人运动进行定位和监测的成功应用。将全球定位系统和地理信息系统技术相结合成为一个独特的系统,确保实时监控的移动对象和主题,并显示在一个足够的地理地图与除了许多地理参考数据的对象和受试者的准确位置。
对行人或车辆的位置信息可同时通过安装在车辆上的传感器采集数据,在道路上的行人设备(在日本有一个主动适应的书包“跟踪标签”让父母知道他们的孩子在哪里;而英国女人在穿过危险的城市区域时会安装定位传感器在戒指上来确保安全)。传感器数据被传送到控制中心,这些控制中心被处理并返回到驱动程序或行人。
确定行人的当前位置对急救病例和需要紧急援助(心脏病发作、行人抢劫)的行人十分重要,而且在导航的情况下,以确定步行的原点等。服务请求是由简单的推上移动设备按钮,确定当前位置,并转发对警察的求助电话,紧急服务等。
3.3行人智能信息系统
交通是一个动态的过程,它在空间和时间上不断变化。在这个过程中的实时信息的作用是不可避免的。实时信息通知用户的车辆的到达和离开,改变的可能性,车辆的位置,拥堵和延误的车辆,时间表,票价,路线,以及其他信息,如时间,日期,天气预报等。基于及时准确的信息,用户在最佳时间的出发,旅行方法,选择的旅行路线,选择的旅行方式,改变目的地或取消旅行。
利用卫星提供的数据,GPS接收机在3米(10英尺-20英尺)位置计算车辆或行人。可以通过使用改进的差分GPS–DGPS(差分全球定位系统)来定位的车辆或行人的精度。读取的数据通过互联网或通过使用移动电话网络的GPRS(通用分组无线业务)发送给中心。处理后的信息通过交互式和非交互式媒体分发给用户。
用户可以在旅行之前获取信息(旅行前的信息),在旅行期间(旅行信息)和旅行结束(结束旅行信息)。在火车或公共汽车、在办公室或在家中的前旅行之前收到的信息可能被旅行者用于旅行或其他活动的准备。
注意:请将外文文献原文复印件附在后面。
附外文原文:
Lucia Janušová, Silvia Čičmancová. Improving Safety of Transportation by Using Intelligent Transport Systems[J]. Procedia Engineering, 2016, Vol.134
INTELLIGENT TRANSPORT SYSTEMS AND PEDESTRIAN TRAFFIC
ABSTRACT
The paper gives an overview of the past development and implementation of Intelligent Transport Systems in pedestrian traffic. Starting from recent development projects and methodological approaches to the development of ITS, an overview of the existing technologies of implementing ITS in pedestrian traffic is given, and some solutions are proposed that would be feasible in the Republic of Croatia, as well as in other transition countries. As the most significant functions of integrated systems within ITS, the possibilities are presented of locating pedestrians in the network, pedestrian guidance (especially the blind and low-vision persons as well as persons in wheelchairs), provision of on-trip information, etc. Special focus is on the area of pedestrian protection in traffic (avoidance of accidents) using devices fitted onboard vehicles and embedded in road infrastructure. The significance of timely integration of the pedestrian traffic in designing the future ITS architecture has been indicated
KEY WORDS
intelligent transport systems (ITS), pedestrian traffic, pedestrian guidance, real-time information, traffic safety
1. INTRODUCTION
Walking is the foundation of every movement, either as the main mode or as addition in the chain of complex multi-modal movement. Any movement of people starts and ends by walking which means that it is included in every traffic mode.
While performing movement the pedestrians and the vehicles often share common surfaces, which causes numerous problems to both. By moving along the same surfaces the pedestrians are exposed to traffic incidents, noise, exhaust gases and substantial time losses. In order to ensure equality of conditions all the traffic participants should be treated in the same way. Favouring of any traffic mode at the expense of another, results eventually in non-functional and non-efficient solutions of general mobility. The existing solutions of intelligent transport systems in the world include equally the user services for the pedestrians as well. In this sense, the greatest improvement was made in Japan, where ITS support for pedestrians has been isolated as a separate development area.
The improvements obtained by the application of ITS approach can be quantitatively expressed through the indicators of improving the quality of services, increase in the efficiency and general improvement of pedestrian traffic safety. Here, special importance is on the possibilities of ITS in pedestrian guidance and avoidance of pedestrian-vehicle accidents. As the most important functions of integrated sub-systems within ITS, the focus is on the possibilities of locating pedestrians in the network, provision of on-trip information especially to blind persons in order to make them avoid dangerous spots, guidance of persons in wheelchairs as well as protection of pedestrians using the devices fitted onboard vehicles and embedded in the road. The paper shows the basic principles and technologies of this relatively new approach to raising the quality of people mobility.
2. BASIC CHARACTERISTICS AND DEVELOPMENT OF INTELLIGENT TRANSPORT SYSTEMS
Frequently, the misconception in the wider professional community is the opinion that the existing partially applied road telematic solutions represent ITS. This is far from true, since it is the integration of individual telematic systems with the support of advanced algorithms of information processing, that one may speak about the ITS paradigm. Transportation systems upgraded by the information and telecommunication equipment have received the attribute “intelligent” since in the future solutions they are expected to feature the capabilities of learning, reasoning and adapting to traffic environment.
The initial step in ITS development is the building of the respective architecture. The contribution of architecture is crucial in the initial phase of system design when the users requirements and possible solutions have to be defined and harmonized, the standards and recommendations from the respective industries, construction, telecommunication, electronics, etc. defined. Since ITS architecture represents the structural hierarchy of the future system, it has to anticipate the future development of diverse equipment that is going to be used. The creation of national architecture is estimated to require 1-2 years, and regional ones 6-12 months. The creation of national ITS architecture requires participation of all the stakeholders such as government administrations, scientific institutions, tourist agencies, local and financial communities, network operators, providers (owners) of transportation services and other interested users. The participants in the developing of the frames of the future ITS architecture are expected to be highly professional, creative and have vision regarding ITS development.
Due to the size and complexity of intervention in the development and implementation, the introduction of ITS has to be methodically prepared and well managed. The usual practice in transition countries when introducing ITS is the work in phases, using the step-by-step principle. The existing telematic equipment, which fits into the future required standards, is kept and if necessary upgraded. The problems that may occur are the incompatibility of the installed equipment and impossibility of its upgrade. The special actual problem in these upgrades is the resistance of the investors who are reluctant to change it before the return of the previous investments is completed.
The majority of the developed countries in the world today have a built national architecture such as America, Japan, Australia, etc. In the European Union there are significant problems in defining a unique ITS architecture. Here, a special problem is that some member countries have started their own developments. The following separate projects are known: France - ACTIF (Architecture Cadre pour le Transport Intelligent en France), Norway - ARKTRANS, Italy - ARTIS (Architettura Telematica Italiana per il Sistema dei Trasporti), Finland – TelemArk, the Czech Republic - TEAM PROJECT, Austria - TTS-A (Transport Telematics System – Austria) and the Netherlands - AVB/STIS/Koepel. In Sweden, Spain, Switzerland, Slovenia, Slovakia, Poland, Hungary, etc. ITS architecture is in the phase of development and studying. Great Britain has not yet defined a unique national architecture, but there are initiatives to unify its regional architectures.
The European Commission has brought a number of measures and recommendations for the building of a unique European ITS architecture. Thus, in 1994 it brought an ITS architecture programme entitled SATIN (System Architecture and Traffic Control Integration) suggesting a large number of measures to improve the road infrastructure in order to increase safety and transport efficiency. A new project entitled CONVERGE in 1996 has revised the program SATIN and is upgraded by the system architecture for rail, water, and air traffic. The European Commission has continued its research and in 1998 produced a draft of the Pan-European system architecture KAREN (Keystone Architecture Required for European Networks) based on the methods developed in SATIN and CONVERGE. During 2000/01 the KAREN project was updated several times, expanded and improved and it is considered the predecessor of the new project of the European ITS architecture “European ITS Framework Architecture”. Today, two projects of the European ITS architecture are active, known under the title FRAME-NET and FRAME-S. A series of proposals are yet to be expected from the European Commission regarding the harmonization of the differences and incompatibilities of national architectures across Europe and the world. Figure 1, in compliance with literature, presents the basic components of ITS architecture.
The focus on technical issues i. e. on the telematics equipment without considering the functional connection can lead in the wrong direction. It may happen that the installed equipment does not provide the expected services or the information is not given to those who need them. Such technologies become then islands with no communication between them, and this may multiply increase the costs and restrict their use.In order to minimize the risks of bad solutions attention should be paid to the following requirements.
– Compatibility, which means that software support,or the devices in the system can be modified or upgraded, with the system continuing to function and not losing on the quality of service;
– Expansibility, which is very similar to compatibility, and means that the system, in case more work and new tasks are needed, can be successfully expanded (upgraded by new equipment, software support);
– Interoperability is the capability of two or several systems to exchange and use the exchanged information (IEEE definition). The issue of interoperability is especially studied when it is necessary to connect different operators or systems from different regions or countries. Such examples are the charging of toll, fares or parking in different countries, by using smart cards. In such cases it is necessary to adopt and harmonize the standard for technological, administrative and financial processes. This may also mean the development of a common architecture or their parts;
– Integrability is the possibility of connecting and harmonizing the work of several systems into one. A unique integrated system that is multiply feasible is more cost-efficient than the building of individual subsystems. The integration of the existing applications is much more difficult and complex than the building of a completely new integrated system;
– Standardization is the necessary precondition to achieve successful realization of ITS in the total lifecycle of these systems.
Apart from the mentioned requirements, successful ITS should be purposeful, feasible, reliable, precise, safe and socially acceptable.
3. IMPLEMENTATION OF ITS IN PEDESTRIAN TRAFFIC
By using of the advanced ITS technologies that represent the upgrade of the classical traffic engineering, new values for all the pedestrians are created, and especially for those with special needs who have to be provided smooth movement free of barriers. The legislation of the European Union member countries defines a person as the person with special needs, if there is certain threat to the body functions, or mental capabilities over a period longer than 6 months from the state normal for the respective age, assuming that this has created a real barrier for normal participation of that person in everyday social life.The improvements related to the usage of ITS are usually expressed through the following indicators :
– shortening of the travel time,
– reduction of the travel costs,
– reduction in the number of incidents,
– reduction of negative impact on the environment,
– increase in the comfort and satisfaction of pedestrians,
– increase of capacity,
– development of industry.
Some of the mentioned indicators can be easily quantified, whereas for the more complex ones various estimation methods are used, based on the fuzzy approach and artificial neuron networks.
3.1 Behaviour and requirements of pedestrians
For better understanding of the users requests, it is necessary to collect data on the behaviour of pedestrians in traffic regarding their age, gender, size, purpose of movement, medical condition, etc. In order to analyze these data various methods of statistical studies, intelligent algorithms of prediction (analysis trend) and various methods of identifying typical samples (method of support vectors, artificial neuron networks, etc.) are used. Since pedestrian flows include also the persons with special needs, their requirements have to be considered as well. Based on the clearly defined requirements it is possible to define the functional flows of data and to make a decision on the correct selection of the telematics equipment to solve the users requests.
The pedestrians who have certain difficulties in traffic can be divided into two groups:
– Pedestrians with difficulties in a wider sense (children, seniors, pregnant women, pedestrians with luggage and baby carriages);
– Pedestrians with difficulties in a narrower sense(physically disabled, persons with low vision, impaired hearing and mental disorders).
Each of the mentioned groups has a specific behaviour. Children have sudden and irregular reactions so that, apart from the solutions offered by ITS, they need an adult supervisor. Senior persons, however, have reduced mobility and strength and they need more time to cross the street, they have weaker reflexes, reduced eyesight and hearing, limited attention and memory. The blind use a stick and guide dogs. They orient themselves by touch or contact and sense of hearing. They need more time to cross the street. They also have difficulties in maintaining the direction of path at the intersection. The loss of hearing is not a significant barrier in traffic like the loss of sight. Theseusers rely mainly on visual indicators and they need large visibility field and an environment free of visual obstructions. The persons with mental difficulties have limited possibilities of observation, identification, understanding, interpretation and reaction to information. Most often they cannot read and therefore it is recommendable to use pictures, symbols and colours as signs in traffic. For instance, it is better to use a pedestrian animation on the signal indicator (signal controlled intersection) than to write out the message “GO”.
Based on a detailed analysis of the behaviour of pedestrians in traffic and their requirements, it is possible to find suitable solution within ITS and thus to satisfy the users. Efficient linking of the users requirements on the one hand and the offered solutions on the other, depends to a large extent on the quality of the available information.
3.2 Locating pedestrians
For a more efficient functioning of the pedestrian traffic, continuous collecting and processing of real--time data on traffic are necessary. Therefore, special importance lies on the comprehensive connection of pedestrians, vehicles and road into a single information and telecommunication network. Based on the current location of pedestrians and vehicles on the road it is possible to improve the guidance and safety of pedestrian traffic flows.
Three important possibilities provided by ITS include locating, mapping (assigning position to the map), and communication between the components of the system and environment not belonging to the system itself. For locating i. e. precise determination of the position of any object on Earth (land, sea, and air – space close to the Earth) at any moment, as well as for determination of the current position and speed of a moving object the satellite navigation systems are used, mostly GPS (Global Positioning System). Today, apart from military purposes, which was the original incentive for developing the system, GPS receivers are also used in everyday civil life, including traffic for the positioning and controlling of traffic and transport means, reloading mechanisation and logistics units (pallets, containers), for planning of travelling routes, reporting and analysis of traffic accidents, etc. Successful application of GPS technologies for the positioning and monitoring pedestrian movement on certain network or area is much improved by using GIS technology (Geographic Information System). Combining GPS and GIS technology into a unique system ensures monitoring of mobile objects / subjects in real time and displaying of the accurate position of objects / subjects on an adequate geographic map with the addition to many geo-referenced data.
The information on the position of pedestrians or vehicles can be obtained also by collecting data by means of sensors fitted onboard vehicles, in the roads and on the pedestrian equipment (there is an initiative in Japan to fit the school bags with “tracking tags” so that the parents would know where their children are; women in England who move through dangerous city districts install locating sensors in their rings for security reasons). The sensor data are transferred to the control centre where these are processed and returned back to the driver or the pedestrian.
Determining of the current location of the pedestrian is especially important in emergency cases when the pedestrian needs urgent assistance (heart attack, pedestrian mugging), but also in cases of navigation in order to determine the point of origin of walking, etc. The service request is made by simple push on the mobile device button which determines the current location, and forwards the call for help towards the police, emergency services, etc.
3.3 Intelligent information systems for pedestrians
Traffic is a dynamic process which continuously changes in space and time. The role of real-time information in this process is inevitable. The real-time information inform the users about the arrival and departure of vehicles, possibilities of changing, location of vehicles, congestion and delays of vehicles, schedules, fares, routes, as well as other information such as time, date, weather forecast, etc. Based on timely and accurate information the users make decisions on optimal time of departure, travel method, selection of the travel route, change of destination or cancel the trip.
Using the satellite-provided data the GPS receiver calculates the location of the vehicle or pedestrian within 3m to 6m (10ft - 20ft) [21]. The precision of locating the vehicle or pedestrian can be improved by using differential GPS – DGPS (Differential Global Positioning System). The read data are sent to the centre via the Internet or by using the mobile telephony network - GPRS (General Packet Radio Service). The processed information is distributed to the users by means of interactive and non-interactive media.
The user may obtain information prior to the trip (pre-trip information), during the trip (on-trip information) and at the end of the trip (end-trip information). The pre-trip information received before the departure of the train or bus, at the office or at home may be used by the traveller for good preparation of the trip or for other activities.