欢迎光临散文网 会员登陆 & 注册

利用同构思想简化计算(2021全国甲圆锥曲线)

2022-08-01 21:15 作者:数学老顽童  | 我要投稿

(2021全国甲,20)抛物线C的顶点为坐标原点O,焦点在x轴上,直线lx%3D1CPQ两点,且OP%5Cbot%20OQ.已知点M%5Cleft(%202%2C0%20%5Cright)%20,且%5Codot%20Ml相切.

(1)求C%5Codot%20M的方程;

(2)设A_1A_2A_3C上的三个点,直线A_1A_2A_1A_3均与%5Codot%20M相切.判断直线A_2A_3%5Codot%20M的位置关系,并说明理由.

解:(1)设抛物线的方程为y%5E2%3D2px

已知PQ的坐标分别为

%5Cleft(%201%2C%5Csqrt%7B2p%7D%20%5Cright)%20%5Cleft(%201%2C-%5Csqrt%7B2p%7D%20%5Cright)%20

%5Coverrightarrow%7BOP%7D%3D%5Cleft(%201%2C%5Csqrt%7B2p%7D%20%5Cright)%20%5Coverrightarrow%7BOQ%7D%3D%5Cleft(%201%2C-%5Csqrt%7B2p%7D%20%5Cright)%20

OP%5Cbot%20OQ%5Coverrightarrow%7BOP%7D%5Ccdot%20%5Coverrightarrow%7BOQ%7D%3D0

1%5E2-%5Csqrt%7B2p%7D%5Ccdot%20%5Csqrt%7B2p%7D%3D0,

解得2p%3D1

C的方程为y%5E2%3Dx

易知Ml的距离为1

%5Codot%20M的半径为1

%5Codot%20M的方程为%5Cleft(%20x-2%20%5Cright)%20%5E2%2By%5E2%3D1.

(2)先画个图

A_1%5Cleft(%20x_1%2Cy_1%20%5Cright)%20A_2%5Cleft(%20x_2%2Cy_2%20%5Cright)%20A_3%5Cleft(%20x_3%2Cy_3%20%5Cright)%20

因为点A_1A_2C上,所以

y_%7B1%7D%5E%7B2%7D%3Dx_1y_%7B2%7D%5E%7B2%7D%3Dx_2

两式相减,得y_%7B1%7D%5E%7B2%7D-y_%7B2%7D%5E%7B2%7D%3Dx_1-x_2

所以%5Cleft(%20y_1%2By_2%20%5Cright)%20%5Cleft(%20y_1-y_2%20%5Cright)%20%3Dx_1-x_2

所以%5Cfrac%7By_1-y_2%7D%7Bx_1-x_2%7D%3D%5Cfrac%7B1%7D%7By_1%2By_2%7D

所以直线A_1A_2的斜率为%5Cfrac%7B1%7D%7By_1%2By_2%7D

(此即点差法

所以直线A_1A_2的方程为

y-y_1%3D%5Cfrac%7B1%7D%7By_1%2By_2%7D%5Cleft(%20x-x_1%20%5Cright)%20

整理得x-%5Cleft(%20y_1%2By_2%20%5Cright)%20y%2By_1y_2%3D0

因为直线A_1A_2%5Codot%20M相切,

所以%5Cfrac%7B%5Cleft%7C%202%2By_1y_2%20%5Cright%7C%7D%7B%5Csqrt%7B1%2B%5Cleft(%20y_1%2By_2%20%5Cright)%20%5E2%7D%7D%3D1

整理得

%5Cleft(%20y_%7B1%7D%5E%7B2%7D-1%20%5Cright)%20y_%7B2%7D%5E%7B2%7D%2B2y_1y_2%2B3-y_%7B1%7D%5E%7B2%7D%3D0,即

%5Cleft(%20y_%7B1%7D%5E%7B2%7D-1%20%5Cright)%20%5Ccdot%20%7B%5Ccolor%7Bred%7D%20%7Bx_2%7D%7D%2B2y_1%5Ccdot%20%7B%5Ccolor%7Bred%7D%20%7By_2%7D%7D%2B3-y_%7B1%7D%5E%7B2%7D%3D0

同理,因为直线A_1A_3%5Codot%20M相切,所以

%5Cleft(%20y_%7B1%7D%5E%7B2%7D-1%20%5Cright)%20%5Ccdot%20%7B%5Ccolor%7Bred%7D%20%7Bx_3%7D%7D%2B2y_1%5Ccdot%20%7B%5Ccolor%7Bred%7D%20%7By_3%7D%7D%2B3-y_%7B1%7D%5E%7B2%7D%3D0

所以点A_2A_3皆在直线

%5Cleft(%20y_%7B1%7D%5E%7B2%7D-1%20%5Cright)%20%5Ccdot%20%7B%5Ccolor%7Bred%7D%20%7Bx%7D%7D%2B2y_1%5Ccdot%20%7B%5Ccolor%7Bred%7D%20%7By%7D%7D%2B3-y_%7B1%7D%5E%7B2%7D%3D0上,

所以直线A_2A_3的方程即为

%5Cleft(%20y_%7B1%7D%5E%7B2%7D-1%20%5Cright)%20%5Ccdot%20%7B%5Ccolor%7Bred%7D%20%7Bx%7D%7D%2B2y_1%5Ccdot%20%7B%5Ccolor%7Bred%7D%20%7By%7D%7D%2B3-y_%7B1%7D%5E%7B2%7D%3D0

所以,点M到直线A_2A_3的距离

d%3D%5Cfrac%7B%5Cleft%7C%202%5Cleft(%20y_%7B1%7D%5E%7B2%7D-1%20%5Cright)%20%2B3-y_%7B1%7D%5E%7B2%7D%20%5Cright%7C%7D%7B%5Csqrt%7B%5Cleft(%20y_%7B1%7D%5E%7B2%7D-1%20%5Cright)%20%5E2%2B%5Cleft(%202y_1%20%5Cright)%20%5E2%7D%7D%3D%5Cfrac%7B%5Cleft%7C%20y_%7B1%7D%5E%7B2%7D%2B1%20%5Cright%7C%7D%7B%5Cleft%7C%20y_%7B1%7D%5E%7B2%7D%2B1%20%5Cright%7C%7D%3D1

所以直线A_2A_3%5Codot%20M相切.

——over——

利用同构思想简化计算(2021全国甲圆锥曲线)的评论 (共 条)

分享到微博请遵守国家法律