欢迎光临散文网 会员登陆 & 注册

Jensen零点公式

2022-08-05 19:45 作者:子瞻Louis  | 我要投稿

考虑一个 %7Cz%7C%5Cle%20R 内全纯的函数 F(z) , 记它在 %7Cz%7C%5Cle%20r 内的零点个数为 n(r) (算上零点的重数),则根据经典的辐角定理,可得:

n(r)%3D%5Cfrac1%7B2%5Cpi%20i%7D%5Coint_%7B%7Cz%7C%3Dr%7D%5Cfrac%7BF'%7D%7BF%7D(z)%5Cmathrm%20dz%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_0%5E%7B2%5Cpi%7D%5Cfrac%7BF'%7D%7BF%7D(re%5E%7Bi%5Ctheta%7D)re%5E%7Bi%5Ctheta%7D%5Cmathrm%20d%5Ctheta

将它除以r后从0到R积分,由于左侧是实数,所以先对右侧取实部,

%5Cbegin%7Baligned%7D%5Cint_%7B0%7D%5ER%5Cfrac%7Bn(r)%7Dr%5Cmathrm%20dr%26%3D%5Cfrac1%7B2%5Cpi%7D%5CRe%5Cint_0%5ER%5Cint_0%5E%7B2%5Cpi%7D%5Cfrac%7BF'%7D%7BF%7D(re%5E%7Bi%5Ctheta%7D)e%5E%7Bi%5Ctheta%7D%5Cmathrm%20d%5Ctheta%5Cmathrm%20dr%5C%5C%26%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_0%5E%7B2%5Cpi%7D%5Cln%7CF(Re%5E%7Bi%5Ctheta%7D)%7C%5Cmathrm%20d%5Ctheta-%5Cln%7CF(0)%7C%5Cend%7Baligned%7D

然鹅对r的积分过程,r会取遍所有零点的模,我们要验证取到这些r时并不会对积分结果造成影响:取 F 在 %7Cz%7C%5Cle%20R 内的所有零点的模,并将他们从小到大排列:

 0%3Dr_0%3Cr_1%3C%5Cdots%3Cr_n%5Cle%20R%3Dr_%7Bn%2B1%7D 

我们打算证明对每个 0%5Cle%20i%5Cle%20n

%5Clim_%7B%5Cepsilon%5Cto0%5E%2B%7D%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%5Cln%5Cleft%7C%5Cfrac%7BF((1%2B%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D)%7D%7BF((1-%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D)%7D%5Cright%7C%5Cmathrm%20d%5Ctheta%3D0

设 z_1%2C%5Cdots%2Cz_m 是 F(z) 在圆 %7Cz%7C%3Dr_i 上的所有零点(多重零点按重数计算),那么它就可以被分解为

F(z)%3DG(z)%5Cprod_%7Bj%3D1%7D%5Em(z-z_j)

其中 G 是一个在该圆上没有零点的全纯函数,由此有

%5Cln%7CF(re%5E%7Bi%5Ctheta%7D)%7C%3D%5Csum_%7Bj%3D1%7D%5Em%5Cln%7Cre%5E%7Bi%5Ctheta%7D-z_j%7C%2B%5Cln%7CG(re%5E%7Bi%5Ctheta%7D)%7C

取 r%3D(1%2B%5Cepsilon)r_i%2Cr%3D(1-%5Cepsilon)r_i 并积分后相减,得

%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%5Cln%5Cleft%7C%5Cfrac%7BF((1%2B%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D)%7D%7BF((1-%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D)%7D%5Cright%7C%5Cmathrm%20d%5Ctheta%3D%5Csum_%7Bj%3D1%7D%5Em%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%5Cln%5Cleft%7C%5Cfrac%7B(1%2B%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D-z_j%7D%7B(1-%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D-z_j%7D%5Cright%7C%5Cmathrm%20d%5Ctheta

因为 z_j 模长为 r_i ,所以对每个 j ,有

%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%5Cln%5Cleft%7C%5Cfrac%7B(1%2B%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D-z_j%7D%7B(1-%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D-z_j%7D%5Cright%7C%5Cmathrm%20d%5Ctheta%3D%5Cint_%7B-%5Cpi%7D%5E%7B%5Cpi%7D%5Cln%5Cleft%7C%5Cfrac%7B(1%2B%5Cepsilon)e%5E%7Bi%5Ctheta%7D-1%7D%7B(1-%5Cepsilon)e%5E%7Bi%5Ctheta%7D-1%7D%5Cright%7C%5Cmathrm%20d%5Ctheta

又由于

%5Cleft%7C%5Cfrac%7B(1%2B%5Cepsilon)e%5E%7Bi%5Ctheta%7D-1%7D%7B(1-%5Cepsilon)e%5E%7Bi%5Ctheta%7D-1%7D%5Cright%7C%5E2%3D%5Cfrac%7B%5Cepsilon%5E2%2B4(1%2B%5Cepsilon)%5Csin%5E2%5Cfrac12%5Ctheta%7D%7B%5Cepsilon%5E2%2B4(1-%5Cepsilon)%5Csin%5E2%5Cfrac12%5Ctheta%7D%3D1%2B%5Cmathcal%20O(%5Cepsilon)

所以确实有

%5Clim_%7B%5Cepsilon%5Cto0%5E%2B%7D%5Cint_%7B0%7D%5E%7B2%5Cpi%7D%5Cln%5Cleft%7C%5Cfrac%7BF((1%2B%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D)%7D%7BF((1-%5Cepsilon)r_ie%5E%7Bi%5Ctheta%7D)%7D%5Cright%7C%5Cmathrm%20d%5Ctheta%3D0

这也就证明了以下定理:

(Jensen零点公式)对 %7Cz%7C%5Cle%20R 内全纯的函数 F(z) ,以 n(r) 表示它在 %7Cz%7C%5Cle%20r 内的零点个数(算上零点的重数),则

  • %5Cint_0%5ER%5Cfrac%7Bn(r)%7Dr%5Cmathrm%20dr%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_0%5E%7B2%5Cpi%7D%5Cln%7CF(Re%5E%7Bi%5Ctheta%7D)%7C%5Cmathrm%20d%5Ctheta-%5Cln%7CF(0)%7C

将右侧的积分用分部积分可得

%5Cint_0%5ER%5Cfrac%7Bn(r)%7Dr%5Cmathrm%20dr%3Dn(R)%5Clog%20R-%5Cint_0%5ER%5Clog%20r%5Cmathrm%20dn(r)

设 z_1%2C%5Cdots%2Cz_%7Bn(R)%7D 为 F 在 %7Cz%7C%5Cle%20R 内的所有零点,则有

%5Cint_0%5ER%5Clog%20r%5Cmathrm%20dn(r)%3D%5Csum_%7Bi%3D1%7D%5E%7Bn(R)%7D%5Clog%20%7Cz_i%7C

由此便可得Jensen公式最常见的一种形式:

%5Cfrac1%7B2%5Cpi%7D%5Cint_0%5E%7B2%5Cpi%7D%5Cln%7CF(Re%5E%7Bi%5Ctheta%7D)%7C%5Cmathrm%20d%5Ctheta%3D%5Cln%7CF(0)%7C%2B%5Clog%5Cprod_%7Bi%3D1%7D%5E%7Bn(R)%7D%5Cleft%7C%5Cfrac%7BR%7D%7Bz_i%7D%5Cright%7C

Jensen零点公式的评论 (共 条)

分享到微博请遵守国家法律