欢迎光临散文网 会员登陆 & 注册

偏微分计算

2023-06-22 11:41 作者:编程会一点建模不太懂  | 我要投稿

题目选自1996年考研数学

设变换%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09u%3Dx-2y%5C%5C%0A%09v%3Dx%2Bay%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20可把方程6%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20x%5E2%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20x%5Cpartial%20y%7D-%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20y%5E2%7D%3D0%0A

化为%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%3D0

分别计算变量u%2Cvx%2Cy的偏导数

%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09u%3Dx-2y%5C%5C%0A%09v%3Dx%2Bay%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20%5CRightarrow%20%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%3D1%5C%5C%0A%09%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%3D-2%5C%5C%0A%09%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D%3D1%5C%5C%0A%09%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%3Da%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

通过链式法则将zx%2Cy的一阶偏导化为zu%2Cv的一阶偏导

%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%09%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20x%7D%3D%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%2B%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D%3D%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%2B%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%20%5Cright)%5C%5C%0A%09%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20y%7D%3D%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%3D%5Cleft(%20-2%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%2Ba%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%20%5Cright)%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20

通过链式法则将zx%2Cy的二阶偏导化为zu%2Cv的二阶偏导

%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20x%5E2%7D%3D%5Cfrac%7B%5Cpartial%20%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%20%5Cright)%7D%7B%5Cpartial%20x%7D%2B%5Cfrac%7B%5Cpartial%20%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%20%5Cright)%7D%7B%5Cpartial%20x%7D%0A

%3D%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5E2%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5Cpartial%20u%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20x%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20x%7D

%3D%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5E2%7D%2B2%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D%0A

%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20x%5Cpartial%20y%7D%3D%5Cfrac%7B%5Cpartial%20%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%20%5Cright)%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%20%5Cright)%7D%7B%5Cpartial%20y%7D%0A

%3D%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5E2%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5Cpartial%20u%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D

%3D-2%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5E2%7D%2B%5Cleft(%20a-2%20%5Cright)%20%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%2Ba%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D%0A

%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20y%5E2%7D%3D-2%5Cfrac%7B%5Cpartial%20%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20u%7D%20%5Cright)%7D%7B%5Cpartial%20y%7D%2Ba%5Cfrac%7B%5Cpartial%20%5Cleft(%20%5Cfrac%7B%5Cpartial%20z%7D%7B%5Cpartial%20v%7D%20%5Cright)%7D%7B%5Cpartial%20y%7D%0A

%3D-2%5Cleft(%20%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5E2%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%20%5Cright)%20%2Ba%5Cleft(%20%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5Cpartial%20u%7D%5Cfrac%7B%5Cpartial%20u%7D%7B%5Cpartial%20y%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D%5Cfrac%7B%5Cpartial%20v%7D%7B%5Cpartial%20y%7D%20%5Cright)%20%0A

%3D4%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5E2%7D-4a%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%2Ba%5E2%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D

将上述偏导数带入方程

6%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20x%5E2%7D%2B%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20x%5Cpartial%20y%7D-%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20y%5E2%7D%3D0

%5Cleft(%2010%2B5a%20%5Cright)%20%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%2B%5Cleft(%206%2Ba-a%5E2%20%5Cright)%20%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20v%5E2%7D%3D0%0A

要使%5Cfrac%7B%5Cpartial%20%5E2z%7D%7B%5Cpartial%20u%5Cpartial%20v%7D%3D0

%5Cleft%5C%7B%20%5Cbegin%7Barray%7D%7Bc%7D%0A%0910%2B5a%5Cne%200%5C%5C%0A%096%2Ba-a%5E2%3D0%5C%5C%0A%5Cend%7Barray%7D%20%5Cright.%20%5CRightarrow%20a%3D3

本题选自1996年考研数学真题,重点考察偏微分变换与链式法则,计算量偏大,即便将此题放在现今考研数学命题中,也不失为一道好题难题。

近年来看来,考研数学的命题有往课本或者往年真题中重复命题的趋势;譬如2022年考研数学一中切比雪夫不等式和线性代数大题在00年代考研数学中出过;2021年考研数学一的数一专题的第一问也是在同济版高等数学中可找到类似的题目;2022年考研数学二中,线性代数大题瑞利商也是在同济版线性代数课后题中能找到类似的题目。

偏微分计算的评论 (共 条)

分享到微博请遵守国家法律