欢迎光临散文网 会员登陆 & 注册

BCJR应用-ISI信道均衡

2023-01-31 22:08 作者:乐吧的数学  | 我要投稿

这个文章,我们讲一下有码间干扰信道的均衡问题,也算是 BCJR 算法的一个应用。

录制的视频在 https://www.bilibili.com/video/BV1EY4y1d7Dp/

我们先看一下这个问题的背景。假设一个信道,数据发送后由于走不同的路径(可能原因之一),到达接收端有不同的延迟以及不同的衰减系数,例如 在 k=0 时刻发送了一个数据,接收端在  k=0, k=1, k=2, k=4 这几个时刻都收到了 k=0 时刻发送的数据,每一个时刻收到的数据,都对应一个衰减系数,我们这里不考虑相位的变化,只考虑幅度的衰减,则 h0, h1, h2, h4 这样四个衰减系数。


则不同时刻收到的数据可以表示为:


%5Cbegin%7Baligned%7D%0A%0Ar_0%20%26%3D%20h_0%20x_0%20%2B%20n_0%20%5C%5C%0A%0Ar_1%20%26%3D%20h_0%20x_1%20%2B%20h_1%20x_0%20%2B%20n_1%5C%5C%0A%0Ar_2%20%26%3D%20h_0%20x_2%20%2B%20h_1%20x_1%20%2B%20h_2%20x_0%20%20%2B%20n_2%5C%5C%0A%0Ar_3%20%26%3D%20h_0%20x_3%20%2B%20h_1%20x_2%20%2B%20h_2%20x_1%20%2B%200%20x_0%20%20%2B%20n_3%5C%5C%0A%0Ar_4%20%26%3D%20h_0%20x_4%20%2B%20h_1%20x_3%20%2B%20h_2%20x_2%20%2B%200%20x_1%20%2B%20h_4%20x_0%20%20%2B%20n_4%5C%5C%0A%0Ar_5%20%26%3D%20h_0%20x_5%20%2B%20h_1%20x_4%20%2B%20h_2%20x_3%20%2B%200%20x_2%20%2B%20h_4%20x_1%20%20%2B%20n_5%5C%5C%0A%0Ar_6%20%26%3D%20h_0%20x_6%20%2B%20h_1%20x_5%20%2B%20h_2%20x_4%20%2B%200%20x_3%20%2B%20h_4%20x_2%20%20%2B%20n_6%5C%5C%0A%0A...%20%5C%5C%0A%0Ar_k%20%26%3D%20h_0%20x_k%20%2B%20h_1%20x_%7Bk-1%7D%20%2B%20h_2%20x_%7Bk-2%7D%20%2B%200%20x_%7Bk-3%7D%20%2B%20h_4%20x_%7Bk-4%7D%20%2B%20n_k%0A%0A%5Cend%7Baligned%7D


实际上就是一个卷积的过程,如果令 h_3%3D0, 则:

r_k%20%3D%20%5Csum_%7Bi%3D0%7D%5E4%20h_i%20x_%7Bk-i%7D%2B%20n_k


可以画成如下的图形:

图一:







对于这样一个信道,我们可以想到,在收到 N 个接收数据 r 后,如何估计出来发送的数据 X ? 这就是所谓的信道均衡或者说信道 detection 的问题。

用概率公式的方式,可以表示为:

p(x_0%2Cx_1%2C%5Ccdots%20%2Cx_%7BN-1%7D%7Cr_0%2Cr_1%2C%5Ccdots%2C%20r_%7BN-1%7D)%20%20%20%5Ctag%201


由于我们做的是卷积计算,因此,公式 (1) 不能写成多个概率的乘积,所以,计算量会非常大。我们可以按照每个输入时刻来计算概率:

p(x_k%3Dx%7Cr_0%2Cr_1%2C%5Ccdots%2C%20r_%7BN-1%7D)%20%20%20%5Ctag%202


p(x_k%3Dx%7Cr)%20%20%20%5Ctag%203


其中 r 是一个 N 维向量.


我们可以把上面的图一,看成是码率为 1 的卷积码,那么,我们就可以用 BCJR 算法来计算公式 (2) 的概率。

用这种方法做的均衡(equalization),是基于栅格的方法(Trellis-based method),当然还有其他方法,例如线性滤波的方法。


从公式 (3) 出发:

p(x_k%3Dx%7Cr)%3D%5Csum_%7B(p%2Cq)%5Cin%20S_x%7D%20p(%5Cpsi_k%3Dp%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7Cr)%20%20%20%5Ctag%204


其中 S_x 表示在 t 时刻,输入 x 引起的所有可能的状态转移.


我们接着分析公式 (4) 中的 p(%5Cpsi_k%3Dp%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7Cr)%20

p(%5Cpsi_k%3Dp%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7Cr)%20%20%3D%20%5Cfrac%7Bp(%5Cpsi_k%3Dp%2C%5Cpsi_%7Bk%2B1%7D%3Dq%2Cr)%7D%7Bp(r)%7D%20%20%5Ctag%205


继续分析公式 (5) 中分子的部分:


%5Cbegin%7Baligned%7D%0A%0Ap(%5Cpsi_k%3Dp%2C%5Cpsi_%7Bk%2B1%7D%3Dq%2Cr)%0A%0A%26%3D%20p(%5Cpsi_k%3Dp%2C%5Cpsi_%7Bk%2B1%7D%3Dq%2Cr_%7B%3Ck%7D%2Cr_k%2Cr_%7B%3Ek%7D)%20%20%5C%5C%0A%0A%26%3D%20p(r_%7B%3Ck%7D%2C%5Cpsi_k%3Dp%2Cr_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%2Cr_%7B%3Ek%7D)%20%20%5Cquad%20%5Cquad%20%20%E6%97%B6%E9%97%B4%E9%A1%BA%E5%BA%8F%E9%87%8D%E6%8E%92%20%20%5C%5C%0A%0A%26%3Dp(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%2Cr_%7B%3Ek%7D%7Cr_%7B%3Ck%7D%2C%5Cpsi_k%3Dp)%20p(r_%7B%3Ck%7D%2C%5Cpsi_k%3Dp)%20%5Cquad%20%5Cquad%20%20%E6%9D%A1%E4%BB%B6%E6%A6%82%E7%8E%87%EF%BC%8C%E5%89%8D%E4%B8%A4%E4%B8%AA%20%20%5C%5C%0A%0A%26%3Dp(r_%7B%3Ck%7D%2C%5Cpsi_k%3Dp)%20p(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%2Cr_%7B%3Ek%7D%7C%5Cpsi_k%3Dp)%20%20%5Cquad%20%5Cquad%20%20%E9%A9%AC%E5%B0%94%E7%A7%91%E5%A4%AB%E6%80%A7%20%20%5C%5C%0A%0A%26%3Dp(r_%7B%3Ck%7D%2C%5Cpsi_k%3Dp)%20p(r_%7B%3Ek%7D%7Cr_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%2C%5Cpsi_k%3Dp)p(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20%20%5Cquad%20%20%E6%9D%A1%E4%BB%B6%E6%A6%82%E7%8E%87%EF%BC%8C%E5%89%8D%E4%B8%A4%E4%B8%AA%20%20%5C%5C%0A%0A%26%3Dp(r_%7B%3Ck%7D%2C%5Cpsi_k%3Dp)%20p(r_%7B%3Ek%7D%7C%5Cpsi_%7Bk%2B1%7D%3Dq)p(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20%20%5Cquad%20%20%E9%A9%AC%E5%B0%94%E7%A7%91%E5%A4%AB%E6%80%A7%5C%5C%0A%0A%26%3Dp(r_%7B%3Ck%7D%2C%5Cpsi_k%3Dp)%20p(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20p(r_%7B%3Ek%7D%7C%5Cpsi_%7Bk%2B1%7D%3Dq)%20%20%5Cquad%20%20%E9%87%8D%E6%8E%92%5C%5C%0A%0A%26%3A%3D%20%5Calpha(p)%20%5Cgamma(p%2Cq)%20%5Cbeta(q)%0A%0A%5Cend%7Baligned%7D%20%20%5Ctag%206


对于 %5Calpha 概率


%0A%5Cbegin%7Baligned%7D%0A%0A%5Calpha_k(q)%20%0A%0A%26%3Dp(r_%7B%3Ck%7D%2C%5Cpsi_k%3Dq)%20%20%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7Dp(r_%7B%3Ck%7D%2C%5Cpsi_k%3Dq%2C%5Cpsi_%7Bk-1%7D%3Dq)%20%20%5Cquad%20%E5%85%A8%E6%A6%82%E7%8E%87%2F%E8%BE%B9%E7%BC%98%E6%A6%82%E7%8E%87%20%20%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7Dp(r_%7B%3Ck-1%7D%2Cr_%7Bk-1%7D%2C%5Cpsi_k%3Dq%2C%5Cpsi_%7Bk-1%7D%3Dq)%20%20%20%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7Dp(r_%7B%3Ck-1%7D%2C%5Cpsi_%7Bk-1%7D%3Dq%2Cr_%7Bk-1%7D%2C%5Cpsi_k%3Dq)%20%20%20%5Cquad%20%E6%8C%89%E6%97%B6%E9%97%B4%E9%87%8D%E6%8E%92%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7Dp(r_%7Bk-1%7D%2C%5Cpsi_k%3Dq%7Cr_%7B%3Ck-1%7D%2C%5Cpsi_%7Bk-1%7D%3Dq)p(r_%7B%3Ck-1%7D%2C%5Cpsi_%7Bk-1%7D%3Dq)%20%20%20%5Cquad%20%E5%89%8D%E4%B8%A4%E4%B8%AA%EF%BC%8C%E6%9D%A1%E4%BB%B6%E6%A6%82%E7%8E%87%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7Dp(r_%7Bk-1%7D%2C%5Cpsi_k%3Dq%7C%5Cpsi_%7Bk-1%7D%3Dq)p(r_%7B%3Ck-1%7D%2C%5Cpsi_%7Bk-1%7D%3Dq)%20%20%20%5Cquad%20%E9%A9%AC%E5%B0%94%E7%A7%91%E5%A4%AB%E6%80%A7%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7Dp(r_%7B%3Ck-1%7D%2C%5Cpsi_%7Bk-1%7D%3Dq)p(r_%7Bk-1%7D%2C%5Cpsi_k%3Dq%7C%5Cpsi_%7Bk-1%7D%3Dq)%20%20%20%5Cquad%20%E9%87%8D%E6%8E%92%5C%5C%0A%0A%26%3D%5Csum_%7Bp-%3Eq%7D%20%5Calpha_%7Bk-1%7D(p)%20%5Cgamma_%7Bk-1%7D(p%2Cq)%0A%0A%5Cend%7Baligned%7D%20%5Ctag%207


对于 %5Cbeta 概率


%0A%5Cbegin%7Baligned%7D%0A%0A%5Cbeta_k(p)%0A%0A%26%3D%20p(r_%7B%3Ek-1%7D%7C%5Cpsi_k%3Dp)%20%20%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7D%20p(r_%7B%3Ek-1%7D%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20%20%5Cquad%20%E5%85%A8%E6%A6%82%E7%8E%87%2F%E8%BE%B9%E7%BC%98%E6%A6%82%E7%8E%87%20%20%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7D%20p(r_k%2Cr_%7B%3Ek%7D%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20%20%5Cquad%20%20%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7D%20p(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%2Cr_%7B%3Ek%7D%7C%5Cpsi_k%3Dp)%20%20%5Cquad%20%20%E6%8C%89%E6%97%B6%E9%97%B4%E9%87%8D%E6%8E%92%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7D%20p(r_%7B%3Ek%7D%7Cr_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%2C%5Cpsi_k%3Dp)p(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20%20%5Cquad%20%E5%89%8D%E4%B8%A4%E4%B8%AA%EF%BC%8C%E6%9D%A1%E4%BB%B6%E6%A6%82%E7%8E%87%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7D%20p(r_%7B%3Ek%7D%7C%5Cpsi_%7Bk%2B1%7D%3Dq)p(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20%20%5Cquad%20%E9%A9%AC%E5%B0%94%E7%A7%91%E5%A4%AB%E6%80%A7%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7D%20p(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20p(r_%7B%3Ek%7D%7C%5Cpsi_%7Bk%2B1%7D%3Dq)%20%20%5Cquad%20%E9%87%8D%E6%8E%92%5C%5C%0A%0A%26%3D%20%5Csum_%7Bp-%3Eq%7D%20%5Cgamma_k(p%2Cq)%20%5Cbeta_%7Bk%2B1%7D(q)%0A%0A%5Cend%7Baligned%7D%20%5Ctag%208


因此,把公式 (6) 代入公式 (4)

p(x_k%3Dx%7Cr)%3D%5Csum_%7B(p%2Cq)%7D%20%5Calpha(p)%20%5Cgamma(p%2Cq)%20%5Cbeta(q)


%5Calpha%2C%20%5Cbeta 概率又可以根据公式 (7) (8) 递推得到。


关于 %5Cgamma 概率,可以根据先验概率和信道给的信息计算出来:

%5Cbegin%7Baligned%7D%0A%0A%5Cgamma(p%2Cq)%20%0A%0A%26%3D%20p(r_k%2C%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20%20%5C%5C%0A%0A%26%3D%20p(r_k%7C%5Cpsi_%7Bk%2B1%7D%3Dq%2C%5Cpsi_k%3Dp)%20p(%5Cpsi_%7Bk%2B1%7D%3Dq%7C%5Cpsi_k%3Dp)%20%20%5C%5C%0A%0A%26%3D%20p(r_k%7Cx_k)%20p(x_k)%0A%0A%0A%0A%5Cend%7Baligned%7D%20%20%5Ctag%209%0A%0A



所以,我们把这种有码间干扰 (Inter-Symbol Interference)的信道,可以看成等效的码率为1的卷积码,从而可以使用 BCJR 算法做概率计算,从而做信道detection(也成为信道均衡  channel equalization).


这也算 BCJR 算法的一个具体应用吧。


BCJR应用-ISI信道均衡的评论 (共 条)

分享到微博请遵守国家法律