欢迎光临散文网 会员登陆 & 注册

论自然常数e

2022-02-04 08:11 作者:匆匆-cc  | 我要投稿

        从一道寒假作业里的题说起。

证明:%5Ccolor%7Bgray%7D%7B%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En%3Ce%3C%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5E%7Bn%2B1%7D%2C%E5%85%B6%E4%B8%ADn%5Cin%20N%5E*%2Ce%E4%B8%BA%E8%87%AA%E7%84%B6%E5%AF%B9%E6%95%B0%E7%9A%84%E5%BA%95%E6%95%B0%E3%80%82%7D

        先看一张图。

        其实这玩意儿隐含了一件事,叫做

%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En%3De

%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5E%7Bn%2B1%7D%3D%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En%5Ccdot%20%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%3D%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En%3De

        证明题目中的式子,还需要证明其单调性。

        左边

%5Cbegin%7Balign%7D%0A%5Csqrt%5Bn%2B1%5D%7B%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En%7D%26%3D%5Csqrt%5Bn%2B1%5D%7B%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En%5Ccdot%201%7D%0A%5C%5C%26%3C%5Cfrac%7Bn%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%2B1%7D%7Bn%2B1%7D%0A%5C%5C%26%3D%5Cfrac%7Bn%2B2%7D%7Bn%2B1%7D%0A%5C%5C%26%3D1%2B%5Cfrac%7B1%7D%7Bn%2B1%7D%0A%5Cend%7Balign%7D

        即

%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En%3C%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%2B1%7D%5Cright)%5E%7Bn%2B1%7D

        这就证明了左边单调递增。

        右边

%5Cbegin%7Balign%7D%0A%5Cfrac%7B1%7D%7B%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5E%7Bn%2B1%7D%7D%26%3D%5Cleft(%5Cfrac%7Bn%7D%7Bn%2B1%7D%5Cright)%5E%7Bn%2B1%7D%0A%5C%5C%26%3D1%5Ccdot%5Cleft(%5Cfrac%7Bn%7D%7Bn%2B1%7D%5Cright)%5E%7Bn%2B1%7D%0A%5C%5C%26%3C%5Cleft%5B%5Cfrac%7B(n%2B1)%5Ccdot%5Cfrac%7Bn%7D%7Bn%2B1%7D%2B1%7D%7Bn%2B2%7D%5Cright%5D%5E%7Bn%2B2%7D%0A%5C%5C%26%3D%5Cleft(%5Cfrac%7Bn%2B1%7D%7Bn%2B2%7D%5Cright)%5E%7Bn%2B2%7D%0A%5C%5C%26%3D%5Cfrac%7B1%7D%7B%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%2B1%7D%5Cright)%5E%7Bn%2B2%7D%7D%0A%5Cend%7Balign%7D

        即

%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%2B1%7D%5Cright)%5E%7Bn%2B2%7D%3C%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5E%7Bn%2B1%7D

        这就证明了右边单调递减。

        在这里,要特别注意一点。

        事实上,%5Clim_%7Bn%5Cto%5Cinfty%7D%20%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En%3De包括两个式子:

%5Clim_%7Bn%5Cto%2B%5Cinfty%7D%20%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En%3De

%5Clim_%7Bn%5Cto-%5Cinfty%7D%20%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En%3De

        第一个式子上文已证,

        第二个式子只要令n%3D-(t%2B1),则n%5Cto%20-%5Cinfty时,t%5Cto%20%2B%5Cinfty,此时

%5Cbegin%7Balign%7D%0A%5Clim_%7Bn%5Cto-%5Cinfty%7D%20%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En%26%3D%0A%5Clim_%7Bt%5Cto%2B%5Cinfty%7D%20%5Cleft(1-%5Cfrac%7B1%7D%7Bt%2B1%7D%5Cright)%5E%7B-(t%2B1)%7D%0A%5C%5C%26%3D%5Clim_%7Bt%5Cto%2B%5Cinfty%7D%5Cleft(%5Cfrac%7Bt%7D%7Bt%2B1%7D%5Cright)%5E%7B-(t%2B1)%7D%0A%5C%5C%26%3D%5Clim_%7Bt%5Cto%2B%5Cinfty%7D%5Cleft(%5Cfrac%7Bt%2B1%7D%7Bt%7D%5Cright)%5E%7Bt%2B1%7D%0A%5C%5C%26%3D%5Clim_%7Bt%5Cto%2B%5Cinfty%7D%5Cleft(1%2B%5Cfrac%7B1%7D%7Bt%7D%5Cright)%5E%7Bt%2B1%7D%0A%5C%5C%26%3D%5Clim_%7Bt%5Cto%2B%5Cinfty%7D%5Cleft(1%2B%5Cfrac%7B1%7D%7Bt%7D%5Cright)%5Et%5Ccdot%5Cleft(1%2B%5Cfrac%7B1%7D%7Bt%7D%5Cright)%0A%5C%5C%26%3De%0A%5Cend%7Balign%7D

        关于e,著名的故事便是复利。

        假设经过1年利息为100%5C%25,经过%5Cfrac%7B1%7D%7Bn%7D年利息为%5Cfrac%7B100%7D%7Bn%7D%5C%25

        也就是说,一年中结算n次利息,得到的最终本利和为%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En

        列表如下。

%5Cbegin%7Barray%7D%7B%7Cc%7Cc%7C%7D%0A%5Chline%0An%20%26%20%5Cleft(1%2B%5Cfrac%7B1%7D%7Bn%7D%5Cright)%5En%5C%5C%0A%5Chline%0A1%20%26%202%20%5C%5C%0A%5Chline%0A2%20%26%202.25%5C%5C%0A%5Chline%0A3%20%26%202.37%5C%5C%0A%5Chline%0A4%20%26%202.44%5C%5C%0A%5Chline%0A5%20%26%202.49%5C%5C%0A%5Chline%0A6%20%26%202.52%5C%5C%0A%5Chline%0A%E2%80%A6%26%20%E2%80%A6%5C%5C%0A%5Chline%0A%5Cend%7Barray%7D

        该式上涨有极限。

        e是无理数,还是个超越数。

e%3D2.718281828459045%E2%80%A6

        关于e,一个精妙绝伦的式子便是:

e%3D%5Csum_%7Bi%3D0%7D%5E%7B%2B%5Cinfty%7D%5Cfrac%7B1%7D%7Bi!%7D

        这就是e%5Ex的麦克劳林展开式中令x%3D1的结果。

        另一个最完美的式子,欧拉公式

e%5E%7Bi%5Cpi%7D%2B1%3D0

        具体说明均可参考以下文档。


论自然常数e的评论 (共 条)

分享到微博请遵守国家法律