【种花家务·代数】1-3-11本章复习(整式)『数理化自学丛书6677版』
【阅前提示】本篇出自『数理化自学丛书6677版』,此版丛书是“数理化自学丛书编委会”于1963-1966年陆续出版,并于1977年正式再版的基础自学教材,本系列丛书共包含17本,层次大致相当于如今的初高中水平,其最大特点就是可用于“自学”。当然由于本书是大半个世纪前的教材,很多概念已经与如今迥异,因此不建议零基础学生直接拿来自学。不过这套丛书却很适合像我这样已接受过基础教育但却很不扎实的学酥重新自修以查漏补缺。另外,黑字是教材原文,彩字是我写的注解。
【山话嵓语】我在原有“自学丛书”系列17册的基础上又添加了1册八五人教中学甲种本《微积分初步》,原因有二:一则,我是双鱼座,有一定程度的偶双症,但“自学丛书”系列中代数4册、几何5册实在令我刺挠,因此就需要加入一本代数,使两边能够对偶平衡;二则,我认为《微积分初步》这本书对“准大学生”很重要,以我的惨痛教训为例,大一高数第一堂课,我是直接蒙圈,学了个寂寞。另外大学物理的前置条件是必须有基础微积分知识,因此我所读院校的大学物理课是推迟开课;而比较生猛的大学则是直接开课,然后在绪论课中猛灌基础高数(例如田光善舒幼生老师的力学课)。我选择在“自学丛书”17本的基础上添加这本《微积分初步》,就是希望小伙伴升大学前可以看看,不至于像我当年那样被高数打了个措手不及。
第三章整式
本章提要
1、本章的重要概念
(1)有理代数式(有理式),有理整式(整式),有理分式(分式);
(2)单项式,系数,幂,指数,单项式的次数;
(3)多项式,多项式的项,常数项,同类项,多项式的次数。
2、整式的整理化简和运算的步骤和法则
(1)单项式的整理:排因数次序,把相同字母的因数写做一个幂;
(2)多项式的整理:排幂(依某一字母的降幂或升幂排列),合并同类项。
3、去括号与添括号法则
a+(b-c)=a+b-c,a+b-c=a+(b-c);
a-(b-c)=a-b+c,a-b+c=a-(b-c) 。
4、指数法则(m,n 是自然数)
(1)同底数的幂的乘法 aᵐ·aⁿ=aᵐ⁺ⁿ;
(2)同底数的幂的除法 aᵐ÷aⁿ=aᵐ⁻ⁿ (当m>n);aᵐ÷aᵐ=1;
(3)幂的乘方 (aᵐ)ⁿ=aᵐⁿ;
(4)积的乘方 (ab)ᵐ=aᵐbᵐ 。
5、整式的运算法则
(1)加法(见105,109页);
(2)减法(见107,109页);
(3)乘法(见122,124,125页);
(4)除法(见139,140,141页);
(5)乘方(见132,134页)。
6、乘法公式
(1) (a+b)(a-b)=a²-b²,
(2) (a+b)²=a²+2ab+b²,
(3) (a-b)²=a²-2ab+b²,
(4) (a+b)(a²-ab+b²)=a³+b³,
(5) (a-b)(a²+ab+b²)=a³-b³,
(6) (a+b)³=a³+3a²b+3ab²+b³,
(7) (a-b)³=a³-3a²b+3ab²-b³,
(8) (x+a)(x+b)=x²+(a+b)x+ab,
(9) (ax+b)(cx+d)=acx²+(bc+ad)x+bd 。
复习题三
1、写出三个整式,写出三个分式,写出三个单项式。
2、写出 x 的一个二次三项式,写出 a 的一个三次四项式。
3、说出下列各单项式的系数和次数:
4、说出下列多项式的项数和次数,并且指出它的常数项:
(1) 3x-5x³+6;(2)3a-5a²+a³-2a⁴-8+2a⁵ 。
5、怎样的两个项叫做同类项?3a²b³ 和 2a²b² 是同类项吗?为什么?5x²y⁵ 和-y⁵x² 是同类项吗?为什么?
6、单项式的整理有什么要求?整理下列单项式:
(1)-3ababa;(2)-xyy 。
7、多项式的整理有什么要求?整理下列多项式:
演算(8~12):
用直式演算(13~16):
化简(17~34):
用直式演算(35~38):
利用乘法公式演算(39~46):
用乘法公式化简下列各代数式,然后求这个代数式的值(47~48):
用简便的方法求出结果(49~50):
49、(x+3)²(x-3)²=(2x+1)²(2x-1)² 。[提示:(x+3)²(x-3)²=[(x+3)(x-3)]² ]
50、(x+2y)³(x-2y)³-(2x+y)³(2x-y)³ 。
【答案】