就 一三角形面积公式 之证明

有
cos²B+sin²B=cos²A+sin²A
即
cos²B-sin²B+2sin²B
=
2sin²A+cos²A-sin²A
即
cos²B-sin²B-cos²A+sin²A
=
2sin²A-2sin²B
即
cos(2B)-cos(2A)
/
2
=
sin²A-sin²B
即
sin(A+B)sin(A-B)=sin²A-sin²B
即
sinCsin(A-B)=sin²A-sin²B
即
S
=
(absinC·sinCsin(A-B))
/
2(sin²A-sin²B)
即
S
=
(abc²sin(A-B))
/
2(a²-b²)
即
1=(a²-b²)2S/(abc²sin(A-B))
即
S
=
(a²-b²)2S²/(abc²sin(A-B))
即
S
=
(a²-b²)2S/(bc)·2S/(ac)/(2sin(A-B))
即
S
=
(a²-b²)sinAsinB/(2sin(A-B))
得证