欢迎光临散文网 会员登陆 & 注册

傅里叶变换||数学物理方法

2021-02-14 21:32 作者:湮灭的末影狐  | 我要投稿

//其实傅里叶级数在3Blue1Brown的视频里面已经有比较详细的介绍,但为了保证文集的完整性,这一篇笔记还是发表出来。

5.1 傅里叶级数

没有周期函数:f(x%2B2l)%3Df(x)

取三角函数族:

1%2C%5C%3B%5Ccos%5Cfrac%7B%5Cpi%20x%7D%7Bl%7D%2C%5C%3B%5Ccos%5Cfrac%7B2%5Cpi%20x%7D%7Bl%7D%2C...%2C%5Ccos%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%2C...%5C%5C%0A0%2C%5C%3B%5Csin%5Cfrac%7B%5Cpi%20x%7D%7Bl%7D%2C%5C%3B%5Csin%5Cfrac%7B2%5Cpi%20x%7D%7Bl%7D%2C...%2C%5Csin%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%2C...

则该三角函数族正交:该函数族的任意两不同函数在一周期的积分为0.

%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20%5Csin%20mx%20%5Ccos%20nx%20%5Cmathrm%20d%20x%3D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20%5Ccos%20mx%20%5Ccos%20nx%20%5Cmathrm%20d%20x%5C%5C%3D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20%5Csin%20mx%20%5Csin%20nx%20%5Cmathrm%20d%20x%3D0%5C%3B%5C%3B(m%2Cn%5Cin%20%5Cmathbb%20N%5E%2B%20%2C%20m%5Cneq%20n)

f(x)展开为级数:

f(x)%3Da_0%2B%5Csum_%7Bk%3D1%7D%5E%5Cinfty(a_k%5Ccos%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%2Bb_k%5Csin%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D)

则根据函数族的正交性,有

%5Cint_%7B-l%7D%5El%20f(x)%20%5Ccos%20%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%20%5Cmathrm%20d%20x%3D%5Cint_%7B-l%7D%5El%20a_k%5Ccos%5E2%20%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%20%5Cmathrm%20d%20x%3Da_kl%20%5C%3B(k%5Cneq0)

%5Cint_%7B-l%7D%5El%20f(x)%20%5Csin%20%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%20%5Cmathrm%20d%20x%3D%5Cint_%7B-l%7D%5El%20b_k%5Csin%5E2%20%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%20%5Cmathrm%20d%20x%3Db_kl

从而可以求出a_k%2Cb_k

%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D%0Aa_%7Bk%7D%3D%5Cfrac%7B1%7D%7B%20l%7D%20%5Cint_%7B-l%7D%5E%7Bl%7D%20f(%5Cxi)%20%5Ccos%20%5Cfrac%7Bk%20%5Cpi%20%5Cxi%7D%7Bl%7D%20%5Cmathrm%7B~d%7D%20%5Cxi%20%5C%5C%0Ab_%7Bk%7D%3D%5Cfrac%7B1%7D%7Bl%7D%20%5Cint_%7B-l%7D%5E%7Bl%7D%20f(%5Cxi)%20%5Csin%20%5Cfrac%7Bk%20%5Cpi%20%5Cxi%7D%7Bl%7D%20%5Cmathrm%7B~d%7D%20%5Cxi%0A%5Cend%7Barray%7D%5Cright.

特别地,

a_0%3D%5Cfrac%7B%5Cint_%7B-l%7D%5Elf(x)%5Cmathrm%20d%20x%7D%7B2l%7D

可以证明,这里的三角函数族是完备的:

%5Cforall%20f(x)连续,n%5Crightarrow%5Cinfty

%5Cint_%7B-l%7D%5E%7Bl%7D%5Bf(x)%5D%5E%7B2%7D%20%5Cmathrm%7B~d%7D%20x%3D%5Csum_%7Bk%3D0%7D%5E%7B%5Cinfty%7D%20a_%7Bk%7D%5E%7B2%7D%5Cleft%5B%5Ccos%20%5Cfrac%7Bk%20%5Cpi%20x%7D%7Bl%7D%5Cright%5D%5E%7B2%7D%2B%5Csum_%7Bk%3D1%7D%5E%7B%5Cinfty%7D%20b_%7Bk%7D%5E%7B2%7D%5Cleft%5B%5Csin%20%5Cfrac%7Bk%20%5Cpi%20x%7D%7Bl%7D%5Cright%5D%5E%7B2%7D

满足上式,称上述三角函数族完备,上式称为完备性方程,称级数平均收敛f(x).

狄里希利定理:若函数在每一周期内除有限个第一类间断点外处处连续,且只有有限个极值点,则前述傅里叶级数收敛,且在间断点有

a_0%2B%5Csum_%7Bk%3D1%7D%5E%5Cinfty(a_k%5Ccos%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%2Bb_k%5Csin%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D)%3D%5Cfrac12%5Bf(x%2B0)%2Bf(x-0)%5D

什么收敛发散,严格处理起来真的好麻烦...作为物理人,我们只关心:能用就行...

对于奇函数,傅里叶级数只有正弦项;偶函数则只有余弦项。

傅里叶级数有复数形式。

f(z)%3D%5Csum_%7Bk%3D-%5Cinfty%7D%5E%5Cinfty%20c_k%20e%5E%7B%5Cmathrm%20i%20%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%7D

关于函数族的讨论,与前面类似。本来复指数和三角函数的本质就是一样的。

在我的教材里面,求系数的公式是

c_k%3D%5Cfrac%7B1%7D%7B2l%7D%5Cint_%7B-l%7D%5El%20f(%5Cxi)%5Be%5E%7B%5Cmathrm%20i%5Cfrac%7Bk%5Cpi%20%5Cxi%7D%7Bl%7D%7D%5D%5E*%5Cmathrm%20d%20%5Cxi

但是我比较习惯的形式是

c_k%3D%5Cfrac%7B1%7D%7B2l%7D%5Cint_%7B-l%7D%5El%20f(%5Cxi)e%5E%7B-%5Cmathrm%20i%5Cfrac%7Bk%5Cpi%20%5Cxi%7D%7Bl%7D%7D%5Cmathrm%20d%20%5Cxi

本质上是一样的。

5.2 傅里叶积分与傅里叶变换

定义在%5Cmathbb%20R的函数如果不是周期性的,就不能展开为傅里叶级数,但可以考虑它是周期为2l的函数g(x)l%20%5Crightarrow%20%5Cinfty的结果。

g(x)%3Da_0%2B%5Csum_%7Bk%3D1%7D%5E%5Cinfty(a_k%5Ccos%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D%2Bb_k%5Csin%5Cfrac%7Bk%5Cpi%20x%7D%7Bl%7D)

%5Comega_k%3D%5Cfrac%7Bk%5Cpi%7D%7Bl%7D%2C%5C%3B%5CDelta%5Comega%3D%5Cfrac%7B%5Cpi%7D%7Bl%7D,则有

g(x)%3Da_0%2B%5Csum_%7Bk%3D1%7D%5E%5Cinfty(a_k%5Ccos%5Comega_k%20x%2Bb_k%5Csin%5Comega_k%20x)

其中,

%0A%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D%0Aa_%7Bk%7D%3D%5Cfrac%7B1%7D%7Bl%7D%20%5Cint_%7B-l%7D%5E%7Bl%7D%20f(%5Cxi)%20%5Ccos%20%5Comega_k%20%5Cxi%20%5Cmathrm%7B~d%7D%20%5Cxi%20%5C%5C%0Ab_%7Bk%7D%3D%5Cfrac%7B1%7D%7Bl%7D%20%5Cint_%7B-l%7D%5E%7Bl%7D%20f(%5Cxi)%20%5Csin%20%5Comega_k%20%5Cxi%20%5Cmathrm%7B~d%7D%20%5Cxi%0A%5Cend%7Barray%7D%5Cright.

l%5Crightarrow%5Cinfty,则%5CDelta%5Comega%5Crightarrow%5Cmathrm%20d%20%5Comega%2C%5C%3B%20%5Comega_k变为连续参量,以上各式取极限即

%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D%0AA(%5Comega)%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%20%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20f(%5Cxi)%20%5Ccos%20%5Comega%20%5Cxi%20%5Cmathrm%7Bd%7D%20%5Cxi%20%5C%5C%0AB(%5Comega)%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%20%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20f(%5Cxi)%20%5Csin%20%5Comega%20%5Cxi%20%5Cmathrm%7Bd%7D%20%5Cxi%0A%5Cend%7Barray%7D%5Cright.(*)

f(x)%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20A(%5Comega)%20%5Ccos%20%5Comega%20x%20%5Cmathrm%7B~d%7D%20%5Comega%2B%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20B(%5Comega)%20%5Csin%20%5Comega%20x%20%5Cmathrm%7B~d%7D%20%5Comega

上式称为傅里叶积分,而(*)式称为f(x)傅里叶变换式

利用辅助角公式,上式还可以写成:

f(x)%3D%5Cint_%7B0%7D%5E%7B%5Cinfty%7D%20C(%5Comega)%20%5Ccos%20%5B%5Comega%20x-%5Cphi(%5Comega)%5D%20%5Cmathrm%7B~d%7D%20%5Comega

C(%5Comega)为振幅谱,%5Cphi(%5Comega)为相位谱。

以上只是形式结果,严谨的数学理论有:

教材摘录

当分类讨论f(x)的奇偶性时,甚至可以反复横跳:

教材摘录

傅里叶积分有复数形式。

f(x)%3D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20F(%5Comega)%20e%5E%7Bi%20%5Comega%20x%7D%20d%20%5Comega

F(%5Comega)%3D%5Cfrac%7B1%7D%7B2%5Cpi%7D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20f(x)%20e%5E%7B-%5Cmathrm%20i%20%5Comega%20x%7D%20%5Cmathrm%20d%20x

可以写为对称形式:

f(x)%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20F(%5Comega)%20e%5E%7Bi%20%5Comega%20x%7D%20d%20%5Comega

F(%5Comega)%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%5Cpi%7D%7D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20f(x)%20e%5E%7B-%5Cmathrm%20i%20%5Comega%20x%7D%20%5Cmathrm%20d%20x

并简记为:

F(%5Comega)%3D%5Cmathscr%20F%5Bf(x)%5D%2C%5C%3Bf(x)%3D%5Cmathscr%20F%5E%7B-1%7D%5BF(%5Comega)%5D

f(x)称为原函数,F(%5Comega)称为像函数。

傅里叶变换具有如下基本性质:

%5Cmathscr%20F%5Bf'(x)%5D%3D%5Cmathrm%20i%5Comega%20F(%5Comega)

%5Cmathscr%20F%5Cleft%5B%5Cint%5E%7B(x)%7Df(%5Cxi)%5Cmathrm%20d%5Cxi%5Cright%5D%3D%5Cfrac%7BF(%5Comega)%7D%7B%5Cmathrm%20i%20%5Comega%7D

%5Cmathscr%20F%5Bf(ax)%5D%3D%5Cfrac%7B1%7D%7Ba%7DF(%5Cfrac%7B%5Comega%7D%7Ba%7D)

%5Cmathscr%20F%5Bf(x-x_0)%5D%3DF(%5Comega)e%5E%7B-%5Cmathrm%20i%5Comega%20x_0%7D

%5Cmathscr%20F%5Bf(x)%20e%5E%7B%5Cmathrm%20i%5Comega_0%20x%7D%5D%3DF(%5Comega-%5Comega_0)

%5Cmathscr%20F%5Bf_1(x)*f_2(x)%5D%3D2%5Cpi%20F_1(%5Comega)F_2(%5Comega)

其中f_%7B1%7D(x)%20*%20f_%7B2%7D(x)%3D%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20f_%7B1%7D(%5Cxi)%20f_%7B2%7D(x-%5Cxi)%20%5Cmathrm%7Bd%7D%20%5Cxi称为函数f_1%2Cf_2的卷积。

关于这一系列的定理,可能主要是卷积不太好懂...后面找个机会专门研究一下卷积...

多重傅里叶积分:

对于n维情况f(x_1%2Cx_2%2C...%2Cx_n),引入矢量%5Cvec%20k%20%3D%20(k_1%2Ck_2%2C...%2Ck_n)则可以有

f(%5Cvec%20r)%3D%5Ciiint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20F(%5Cvec%20k)e%5E%7B%5Cmathrm%20i%5Cvec%20k%20%5Ccdot%20%5Cvec%20r%7D%20%5Cmathrm%20d%20%5Cvec%20r

F(%5Cvec%20k)%3D%5Cfrac%7B1%7D%7B(2%5Cpi)%5E3%7D%5Ciiint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20f(%5Cvec%20r)e%5E%7B-%5Cmathrm%20i%5Cvec%20k%20%5Ccdot%20%5Cvec%20r%7D%20%5Cmathrm%20d%20%5Cvec%20k

这里因为微分、积分运算都是线性的,就可以简单推广。矢量%5Cvec%20k(好像)就是我们平时见到的波矢。

5.3 %5Cdelta 函数

%5Cdelta函数是一种广义函数,用于描述质点、点电荷、瞬时冲量等理想模型,其定义如下:

%5Cdelta(x)%3D%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bc%7D%0A0%2C%5C%3Bx%5Cneq0%5C%5C%0A%5Cinfty%2C%5C%3Bx%3D0%0A%5Cend%7Barray%7D%5Cright.,

%5Cint_a%5Eb%5Cdelta(x)%5Cmathrm%20dx%3D%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7D%0A0%2C%5C%3Bab%3E0%5C%5C%0A1%2C%5C%3Ba%3C0%3Cb%0A%5Cend%7Barray%7D%5Cright.

%5Cdelta函数是偶函数,其原函数是阶跃函数:

H(x)%3D%5Cint_%7B-%5Cinfty%7D%5Ex%5Cdelta(x)%5Cmathrm%20dx%3D%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bc%7D%0A0%2C%5C%3Bx%3C0%5C%5C%0A1%2C%5C%3Bx%3E0%0A%5Cend%7Barray%7D%5Cright.

它还有被称为“挑选性”的性质:对任意定义在%5Cmathbb%20R的连续函数f(%5Ctau),

%5Cint_%7B-%5Cinfty%7D%5E%7B%5Cinfty%7D%20f(%5Ctau)%20%5Cdelta%5Cleft(%5Ctau-t_%7B0%7D%5Cright)%20%5Cmathrm%7Bd%7D%20%5Ctau%3Df%5Cleft(t_%7B0%7D%5Cright)

其实对于%5Cdelta函数我的另一种理解是:它是一种概率密度函数,描述的是随机变量x必为0的情况(所以其实根本不随机)。显然它满足归一化,且所有非0的值取到的概率都为0.

所以这个挑选性就很好理解了:求f(%5Ctau)的期望,而%5Ctau必为t_0,那么结果就很显然是f(t_0)了。

%5Cdelta函数的傅里叶变换?

(这一段看得有一点点懵,改日再补上)

参考文献

[1] 梁昆淼. 数学物理方法(第四版)[M]. 北京:高等教育出版社,2009.8,69~82.

傅里叶变换||数学物理方法的评论 (共 条)

分享到微博请遵守国家法律