欢迎光临散文网 会员登陆 & 注册

Prime dream(7)——Riemann Zeta's解析延拓与函数方程

2022-04-22 23:49 作者:子瞻Louis  | 我要投稿

本系列文集《Prime dream》

其他文集《数学分析》《杂文集》

引言

接着上一期,由Perron公式,可以得到Tchebyshev psi函数的一个渐进式:

%5Cpsi(x)%3D%5Cfrac1%7B2%5Cpi%20i%7D%5Cint_%7B%5Ckappa-iT%7D%5E%7B%5Ckappa%2BiT%7D%5Cleft%5B-%5Cfrac%7B%5Czeta'%7D%5Czeta(s)%5Cright%5D%5Ccdot%5Cfrac%7Bx%5Es%7Ds%5Cmathrm%20ds%2B%5Cmathcal%20O%5Cleft(%5Cfrac%7Bx%5Clog%5E2x%7DT%5Cright)

其中 x%5Cge1%2C%5Ckappa%3D1%2B%5Cfrac1%7B%5Clog%20x%7D ,以及 T%5Cge1 是足够大的参数,对于主项的积分,我们的想法是利用好被积函数在 s%3D1 处的极点,通过留数定理解决,然而这需要构造一个包围这个极点的围道,但由于被积函数

-%5Cfrac%7B%5Czeta'%7D%7B%5Czeta%7D(s)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac%7B%5CLambda(n)%7D%7Bn%5Es%7D

的右式仅仅在 %5CRe(s)%3E1 时收敛,因此不能直接将上式代入围道积分中,那不妨考虑将它的定义域扩大,即将它解析延拓后再代到积分中,而对它的解析延拓可以直接从 %5Czeta(s) 入手,通过取对数导数便可达到目的。

往期专栏中,我们已经知道 %5Czeta-函数可以解析延拓到平面 %5CRe(s)%3E0%2Cs%E2%89%A01 上,本期的内容是将它解析延拓至平面 %5CRe(s)%5Cle0 上。

一个函数

首先让我们引入一个函数:

%5Ctheta(a%2Cz)%3A%3D%5Csum_%7Bn%3D-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-a(n%2Bz)%5E2%7D

令 f(t)%3De%5E%7B-at%5E2%7D ,则

 %5Ctheta(a%2Cz)%3D%5Csum_%7Bn%3D-%5Cinfty%7D%5E%5Cinfty%20f(n%2Bz) 

再令 %5Chat%20f 为 f Fourier变换,并根据Poisson求和公式,便有

%5Ctheta(a%2Cz)%3D%5Csum_%7Bm%3D-%5Cinfty%7D%5E%5Cinfty%20%5Chat%20f(m)e%5E%7B2%5Cpi%20imz%7D

接下来就是要解决 %5Chat%20f 了:

%5Cbegin%7Baligned%7D%5Chat%20f(%5Cxi)%26%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-at%5E2-2%5Cpi%20i%5Cxi%20t%7D%5Cmathrm%20dt%5C%5C%26%3D%5Cfrac1%7B%5Csqrt%20a%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-t%5E2-%5Cfrac%7B2%5Cpi%20i%5Cxi%7D%7B%5Csqrt%20a%7Dt%7D%5Cmathrm%20dt%5C%5C%26%3D%5Cfrac%7Be%5E%7B-%5Cpi%5E2%5Cxi%2Fa%7D%7D%7B%5Csqrt%20a%7D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-%5Cleft(t%2B%5Cfrac%7B%5Cpi%20i%5Cxi%7D%7B%5Csqrt%20a%7D%5Cright)%5E2%7D%5Cmathrm%20dt%5C%5C%26%3D%5Cfrac%7Be%5E%7B-%5Cpi%5E2%5Cxi%5E2%2Fa%7D%7D%7B%5Csqrt%20a%7D%5Cint_%7B-%5Cinfty%2Bi%5Cfrac%7B%5Cpi%5Cxi%7D%7B%5Csqrt%20a%7D%7D%5E%7B%5Cinfty%2Bi%5Cfrac%7B%5Cpi%5Cxi%7D%7B%5Csqrt%20a%7D%7De%5E%7B-t%5E2%7D%5Cmathrm%20dt%5Cend%7Baligned%7D

为了解决最后的积分,不妨试试构造一个积分围道:%5Cmathcal%20H%3DC_1%2Br_2%2BC_2%2Br_1

积分围道

根据Cauchy定理,被积函数在该围道上的积分等于零,即

%5Coint_%5Cmathcal%20H%20e%5E%7B-t%5E2%7D%5Cmathrm%20dt%3D%5Cint_%7B-R%7D%5ER%20e%5E%7B-t%5E2%7D%5Cmathrm%20dt%2B%5Cint_%7Br_2%7De%5E%7B-t%5E2%7D%5Cmathrm%20dt%2B%5Cint_%7BR%2Bi%5Cfrac%7B%5Cpi%5Cxi%7D%7B%5Csqrt%20a%7D%7D%5E%7B-R%2Bi%5Cfrac%7B%5Cpi%5Cxi%7D%7B%5Csqrt%20a%7D%7De%5E%7B-t%5E2%7D%5Cmathrm%20dt%2B%5Cint_%7Br_1%7De%5E%7B-t%5E2%7D%5Cmathrm%20dt%3D0

其中,r_1上的积分在R%5Cto%5Cinfty时为零:

%5Cbegin%7Baligned%7D%5Cleft%7C%5Cint_%7Br_2%7De%5E%7B-t%5E2%7D%5Cmathrm%20dt%5Cright%7C%26%3D%5Cleft%7C%5Cint_0%5E%7B%5Cpi%5Cxi%2F%5Csqrt%20a%7De%5E%7B-(R%2Biu)%5E2%7Di%5Cmathrm%20du%5Cright%7C%5C%5C%26%5Cle%5Cint_0%5E%7B%5Cpi%5Cxi%2F%5Csqrt%20a%7D%7Ce%5E%7B-R%5E2-2iuR%2Bu%5E2%7D%7C%5Cmathrm%20du%5C%5C%26%5Cle%20e%5E%7B-R%5E2%7D%5Cint_%7B0%7D%5E%7B%5Cpi%5Cxi%2F%5Csqrt%20a%7De%5E%7Bu%5E2%7D%5Cmathrm%20du%5Cxrightarrow%7BR%5Cto%5Cinfty%7D0%5Cend%7Baligned%7D

同理r_2上的积分也为零,于是可得

%5Cint_%7B-%5Cinfty%2Bi%5Cfrac%7B%5Cpi%5Cxi%7D%7B%5Csqrt%20a%7D%7D%5E%7B%5Cinfty%2Bi%5Cfrac%7B%5Cpi%5Cxi%7D%7B%5Csqrt%20a%7D%7De%5E%7B-t%5E2%7D%5Cmathrm%20dt%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-t%5E2%7D%5Cmathrm%20dt%3D%5Csqrt%20%5Cpi

由此便可得:

%5Chat%20f(%5Cxi)%3D%5Csqrt%5Cfrac%7B%5Cpi%7D%7Ba%7De%5E%7B-%5Cpi%5E2%5Cxi%5E2%2Fa%7D

代入到 %5Ctheta(a%2Cz) 中,即可得

  • %255Ctheta(a%252Cz)%253A%253D%255Csum_%257Bn%253D-%255Cinfty%257D%255E%255Cinfty%2520e%255E%257B-a(n%252Bz)%255E2%257D%5Ctheta(a%2Cz)%3D%5Csqrt%7B%5Cfrac%20%5Cpi%20a%7D%5Csum_%7Bm%3D-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-%5Cpi%5E2m%5E2%2Fa%2B2%5Cpi%20imz%7D

函数方程

%5CGamma%5Cleft(%5Cfrac%20s2%5Cright)%3D%5Cint_0%5E%5Cinfty%20x%5E%7Bs%2F2-1%7De%5E%7B-x%7D%5Cmathrm%20dx

将它乘以 %5Cpi%5E%7Bs%2F2%7Dn%5E%7B-s%7D ,可以得到

%5Cbegin%7Baligned%7D%5Cpi%5E%7B-s%2F2%7D%5CGamma%5Cleft(%5Cfrac%20s2%5Cright)n%5E%7B-s%7D%26%3D%5Cint_0%5E%5Cinfty%20%5Cleft(%5Cfrac%20x%7B%5Cpi%20n%5E2%7D%5Cright)%5E%7Bs%2F2-1%7De%5E%7B-x%7D%5Cmathrm%20d%5Cfrac%20x%7B%5Cpi%20n%5E2%7D%5C%5C%26%3D%5Cint_0%5E%5Cinfty%20x%5E%7Bs%2F2-1%7De%5E%7B-%5Cpi%20n%5E2x%7D%5Cmathrm%20dx%5Cend%7Baligned%7D

接着对n从1到无穷求和,上式就变成了

  • %5Cpi%5E%7B-s%2F2%7D%5CGamma%5Cleft(%5Cfrac%20s2%5Cright)%5Czeta(s)%3D%5Cint_0%5E%5Cinfty%20x%5E%7Bs%2F2-1%7D%5Cleft(%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20e%5E%7B-%5Cpi%20n%5E2x%7D%5Cright)%5Cmathrm%20dx

记括号内的小东西为 %5CPhi(x) ,下面的任务就是解决它了。我们来通过一些手段让求和域变为负无穷到正无穷,

1%2B2%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20e%5E%7B-%5Cpi%20n%5E2x%7D%3D%5Csum_%7Bn%3D-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-%5Cpi%20n%5E2x%7D%3D%5Ctheta(%5Cpi%20x%2C0)

而根据前述,有

%5Ctheta(%5Cpi%20x%2C0)%3D%5Cfrac1%7B%5Csqrt%20x%7D%5Csum_%7Bm%3D-%5Cinfty%7D%5E%5Cinfty%20e%5E%7B-%5Cpi%20m%5E2%2Fx%7D%3D%5Cfrac1%7B%5Csqrt%20x%7D%2B%5Cfrac2%7B%5Csqrt%20x%7D%5Csum_%7Bm%3D1%7D%5E%5Cinfty%20e%5E%7B-%5Cpi%20m%5E2%2Fx%7D

这也就是说

  • 1%2B2%5CPhi(x)%3D%5Cfrac1%7B%5Csqrt%20x%7D%2B%5Cfrac2%7B%5Csqrt%20x%7D%5CPhi%5Cleft(%5Cfrac1x%5Cright)

稍作变换,即可得

%5CPhi(x)%3D%5Cfrac1%7B%5Csqrt%20x%7D%5CPhi%5Cleft(%5Cfrac1x%5Cright)%2B%5Cfrac1%7B2%5Csqrt%20x%7D-%5Cfrac12

接着回到前文的积分中

%5Cpi%5E%7B-s%2F2%7D%5CGamma%5Cleft(%5Cfrac%20s2%5Cright)%5Czeta(s)%3D%5Cint_0%5E%5Cinfty%20x%5E%7Bs%2F2-1%7D%5CPhi(x)%5Cmathrm%20dx

将积分拆开并利用倒代换,可得

%5Cbegin%7Baligned%7D%5Cint_0%5E%5Cinfty%20x%5E%7Bs%2F2-1%7D%5CPhi(x)%5Cmathrm%20dx%26%3D%5Cint_1%5E%5Cinfty%20x%5E%7Bs%2F2-1%7D%5CPhi(x)%5Cmathrm%20dx%2B%5Cint_1%5E%5Cinfty%20x%5E%7B-s%2F2-1%7D%5CPhi%5Cleft(%5Cfrac1x%5Cright)%5Cmathrm%20dx%5C%5C%26%3D%5Cint_1%5E%5Cinfty%20x%5E%7Bs%2F2-1%7D%5CPhi(x)%2Bx%5E%7B(1-s)%2F2-1%7D%5CPhi(x)%5Cmathrm%20dx%5C%5C%26%5Cquad%2B%5Cfrac12%5Cint_1%5E%5Cinfty%20x%5E%7B(1-s)%2F2-1%7D-x%5E%7B-s%2F2-1%7D%5Cmathrm%20dx%5C%5C%26%3D%5Cint_1%5E%5Cinfty%20x%5E%7Bs%2F2-1%7D%5CPhi(x)%2Bx%5E%7B(1-s)%2F2-1%7D%5CPhi(x)%5Cmathrm%20dx%2B%5Cfrac1%7Bs(s-1)%7D%5Cend%7Baligned%7D

亦即

  • %5Cpi%5E%7B-s%2F2%7D%5CGamma%5Cleft(%5Cfrac%20s2%5Cright)%5Czeta(s)%3D%5Cint_1%5E%5Cinfty%20x%5E%7Bs%2F2-1%7D%5CPhi(x)%2Bx%5E%7B(1-s)%2F2-1%7D%5CPhi(x)%5Cmathrm%20dx%2B%5Cfrac1%7Bs(s-1)%7D

不难发现此时将s替换为1-s右式是不变的,所以我们得到以下函数方程:

  • %5Cpi%5E%7B-s%2F2%7D%5CGamma%5Cleft(%5Cfrac%20s2%5Cright)%5Czeta(s)%3D%5Cpi%5E%7B-(1-s)%2F2%7D%5CGamma%5Cleft(%5Cfrac%7B1-s%7D2%5Cright)%5Czeta(1-s)

因为右式可以取 %5CRe(s)%3E1 的所有值,所有右式同样可以取到对应的 %5CRe(s)%3C0 的所有值,再加上这个式子是解析的,于是就得到了zeta函数在 %5CRe(s)%3C0 的解析延拓,再结合往期得到的在 %5CRe(s)%3E1 上的解析延拓,根据其唯一性可知以上等式对所有 s%5Cin%5Cmathbb%20C 都成立,

零点

根据函数方程,并通过观察发现  s%3D-2%2C-4%2C%5Cdots 是左式中 %5CGamma%5Cleft(%5Cfrac%20s2%5Cright) 的单极点,这时候右式却是解析的,这说明此时左式中 %5Czeta(s)%3D0 ,亦即 s%3D-2%2C-4%2C%5Cdots 是 %5Czeta-函数的一重零点;

此外还有一个 %5CGamma%5Cleft(%5Cfrac%20s2%5Cright) 的单极点 s%3D0 ,但这时它也是右侧中 %5Czeta(1-s) 的单极点,而其它部分均解析,从而得知 %5Czeta(0)%5Cneq0

这些零点在研究素数分布中并不会发挥太多作用,因此将它们称为平凡零点,与之相对的当然还有分布得有些许杂乱的非平凡零点,结合 %5Czeta-函数的非零区域 %5CRe(s)%5Cge1 以及函数方程, %5Czeta-函数的所有非平凡零点都位于 0%3C%5CRe(s)%3C1 的带型区域中。

  • %5Cpi%5E%7B-s%2F2%7D%5CGamma%5Cleft(%5Cfrac%20s2%5Cright)%5Czeta(s)%3D%5Cpi%5E%7B-(1-s)%2F2%7D%5CGamma%5Cleft(%5Cfrac%7B1-s%7D2%5Cright)%5Czeta(1-s)

所有的平凡零点都来自于 %5CGamma%5Cleft(%5Cfrac%20s2%5Cright) 的极点,所以左侧的乘积其实是只以 %5Czeta-函数的非平凡零点为零点的函数,但这还不够,它还有 s%3D0%2C1 这两个单极点,这好解决,只需要将它乘以 s(s-1) 即可得到完全 %5Czeta-函数,即Riemann's %5Cxi-函数

  • %5Cxi(s)%3Ds(s-1)%5Cpi%5E%7B-s%2F2%7D%5CGamma%5Cleft(%5Cfrac%20s2%5Cright)%5Czeta(s)

它是复平面上的解析函数,且满足 %5Cxi(s)%3D%5Cxi(1-s) ,其零点就是 %5Czeta-函数的非平凡零点,有 %5Cxi(0)%3D%5Cxi(1)%3D1

习惯我们用 %5Crho%3D%5Cbeta%2Bi%5Cgamma 表示Riemann %5Czeta-函数的非平凡零点,并记

N(T)%3A%3D%7C%5C%7B%5Crho%7C0%3C%5Cgamma%5Cle%20T%5C%7D%7C

这里的和号会算上零点的重数,又由于 %5Cxi(s)%3D%5Cxi(1-s) ,所以它的非平凡零点是关于 s%3D%5Cfrac12 对称的,引入 %5Ceta-函数:

%5Ceta(s)%3D1-%5Cfrac1%7B3%5Es%7D%2B%5Cfrac1%7B5%5Es%7D-%5Cdots%3D(1-2%5E%7B1-s%7D)%5Czeta(s)%2C%5Cquad%5CRe(s)%3E0

这可以说明 %5Czeta 没有实零点,由此可得

2N(T)%3D%7C%5C%7B%5Crho%7C-T%5Cle%5Cgamma%5Cle%20T%5C%7D%7C

在之后将会给出当 T%5Cto%5Cinfty 时它是发散的,即说明 %5Czeta 有无穷多个非平凡零点

结语

在传统的解析数论中,Riemann %5Czeta-函数有着举足轻重的地位,然鹅正如本期专栏的引言,在某些情况下,定义在平面 %5CRe(s)%3E1 上的Riemann %5Czeta-函数用起来极为不便,所以自然就会想到将它替换为解析延拓后的 %5Czeta-函数,使它的定义域“变大”,这时候我们便可以将某些问题挪到 %5CRe(s)%3C1 的区域上考虑,

最后再来给大家整个活

在函数方程中代入 s%3D-1 ,根据 %5Czeta(2)%3D%5Cfrac%7B%5Cpi%5E2%7D6 ,可得 %5Czeta(-1)%3D-%5Cfrac1%7B12%7D ,然后根据 

%5Czeta(s)%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty%5Cfrac1%7Bn%5Es%7D

可得以下等式

1%2B2%2B3%2B%5Cdots%3D-%5Cfrac1%7B12%7D

Prime dream(7)——Riemann Zeta's解析延拓与函数方程的评论 (共 条)

分享到微博请遵守国家法律