欢迎光临散文网 会员登陆 & 注册

复旦大学谢启鸿高等代数每周一题[2021A13]参考解答

2021-12-16 20:22 作者:CharlesMa0606  | 我要投稿

本文是本人给出的2021年复旦大学谢启鸿高等代数的每周一题[问题2021A13]的解答

题目来自于复旦大学谢启鸿教授在他的博客提供的每周一题练习

(链接:https://www.cnblogs.com/torsor/p/15329047.html)

本文仅供学习交流,如有错误恳请指正!

[问题2021A13]设V,U分别是数域K上的n,m维线性空间,%5Cvarphi%3AV%5Crightarrow%20U是线性映射.证明:

(1)存在K上的线性空间W,满线性映射%5Cxi%3AV%5Crightarrow%20W,以及单线性映射i%3AW%5Crightarrow%20U,使得%5Cvarphi%3Di%5Ccirc%5Cxi;

(2)若另外存在K上的线性空间W_1,满线性映射%5Cxi_1%3AV%5Crightarrow%20W_1,以及单线性映射i_1%3AW_1%5Crightarrow%20U,使得%5Cvarphi%3Di_1%5Ccirc%5Cxi_1,则存在线性同构%5Ceta%3AW%5Crightarrow%20W_1,使得%5Cxi_1%3D%5Ceta%5Ccirc%5Cxi%2Ci%3Di_1%5Ccirc%5Ceta.

证明(1)设dimIm%5Cvarphi%3Dr,任取一个K上线性空间W,取Ker%5Cvarphi的一组基%5C%7Be_%7Br%2B1%7D%2C%5Ccdots%2Ce_n%5C%7D,扩张为V基%5C%7Be_1%2C%5Ccdots%2Ce_n%5C%7D,取U的一组基%5C%7Bf_1%2C%5Ccdots%2Cf_m%5C%7D.注意到要找单线性映射i%3AW%5Crightarrow%20U,于是应当有dimW%3DdimIm%5Cvarphi%3Dr,W存在性仍然不言而喻.取W基%5C%7Bg_1%2C%5Ccdots%2Cg_r%5C%7D.定义满线性映射%5Cxi%3AV%5Crightarrow%20W,使得:%5Cxi%5Cleft(e_i%5Cright)%3Dg_i%2C%5Cxi%5Cleft(e_j%5Cright)%3D0%2C1%5Cle%20i%5Cle%20r%2Cr%2B1%5Cle%20j%5Cle%20n,这是一个定义好的满线性映射.再定义单线性映射i%3AW%5Crightarrow%20U,使得:i%5Cleft(g_k%5Cright)%3D%5Cvarphi%5Cleft(e_k%5Cright)%2C1%5Cle%20k%5Cle%20r,注意到%5Cvarphi%5Cleft(e_k%5Cright)%2C1%5Cle%20k%5Cle%20rIm%5Cvarphi的一组基,于是i是定义好的单线性映射.容易验证,i%5Ccirc%5Cxi%5Cleft(e_i%5Cright)%3Di%5Cleft(g_i%5Cright)%3D%5Cvarphi%5Cleft(e_i%5Cright)%2Ci%5Ccirc%5Cxi%5Cleft(e_j%5Cright)%3D0%3D%5Cvarphi%5Cleft(e_j%5Cright)%2C1%5Cle%20i%5Cle%20r%2Cr%2B1%5Cle%20j%5Cle%20n,于是我们就找到了K上的线性空间W,满线性映射%5Cxi%3AV%5Crightarrow%20W,以及单线性映射i%3AW%5Crightarrow%20U,使得%5Cvarphi%3Di%5Ccirc%5Cxi.

(2)若另外存在K上的线性空间W_1,满线性映射%5Cxi_1%3AV%5Crightarrow%20W_1,以及单线性映射i_1%3AW_1%5Crightarrow%20U,使得%5Cvarphi%3Di_1%5Ccirc%5Cxi_1,则dimW_1%3DdimW%3Dr,取W_1%5C%7Bh_1%2C%5Ccdots%2Ch_r%5C%7D,其中h_i%3D%5Cxi_1%5Cleft(e_i%5Cright)%2C1%5Cle%20i%5Cle%20r,直接定义线性映射%5Ceta%3AW%5Crightarrow%20W_1,满足%5Ceta%5Cleft(g_i%5Cright)%3Dh_i%3D%5Cxi_1%5Cleft(e_i%5Cright)%2C%5Ceta%5Cleft(g_j%5Cright)%3D0%3D%5Cxi_1%5Cleft(e_j%5Cright)%2C1%5Cle%20i%5Cle%20r%2Cr%2B1%5Cle%20j%5Cle%20n,于是容易验证%5Cxi_1%3D%5Ceta%5Ccirc%5Cxi%2Ci%3Di_1%5Ccirc%5Ceta,并且%5Ceta是线性同构.

%5BQ.E.D%5D

(1)这道题是满秩分解的集合版本

(2)文末附上图片格式的解法,有需要的读者可以自行取用,仅供学习交流

问题2021A13


复旦大学谢启鸿高等代数每周一题[2021A13]参考解答的评论 (共 条)

分享到微博请遵守国家法律