欢迎光临散文网 会员登陆 & 注册

zadoff 码的超级快速的傅立叶变换

2022-08-13 13:14 作者:乐吧的数学  | 我要投稿

(录制的视频:https://www.bilibili.com/video/BV1EY4y1T7DY/

一般的 zadoff 码, 其数学表达式可以写成:  

%20%20x_u(m)%20%3D%20e%5E%7B-j%20%5Cfrac%7B%5Cpi%20u%20m%20(m%2B1)%7D%7BL%7D%7D%20%5Cquad%20m%3D0%2C1%2C%5Ccdots%2C%20L-1


这个函数是以 L 为周期的
证明:  

%5Cbegin%7Balign%7D%0A%20x_u(m%2BL)%20%26%20%3D%20e%5E%7B-j%20%5Cfrac%7B%5Cpi%20u%20(m%2BL)%20(m%2BL%2B1)%7D%7BL%7D%7D%20%20%5C%5C%0A%20%20%20%20%20%20%20%20%20%20%26%20%3D%20e%5E%7B-j%20%5Cfrac%7B%5Cpi%20u%20m%20(m%2B1)%7D%7BL%7D%7D%20%20e%5E%7B%20-j%202%5Cpi%20u(m%2B%5Cfrac%7BL%2B1%7D%7B2%7D)%20%7D%0A%5Cend%7Balign%7D


zadoff 码长一般为质数,L>2 时 L 一定为奇数, 所以, L+1 一定为偶数  
所以  
%20x_u(m%2BL)%20%3D%20x_u(m)


证毕.  








对 ZC 序列做 DFT:  

%20%20%20Y%5Bk%5D%3D%20%5Csum_%7Bm%3D0%7D%5E%7BL-1%7Dx_u(m)%20e%5E%7B-j%202%5Cpi%5Cfrac%7Bk%7D%7BL%7Dm%7D


把 x_u 的表达式代入上式:

%5Cbegin%7Balign%7D%0A%20%20%20Y%5Bk%5D%20%26%3D%20%5Csum_%7Bm%3D0%7D%5E%7BL-1%7D%20e%5E%7B-j%20%5Cfrac%7B%5Cpi%20u%20m%20(m%2B1)%7D%7BL%7D%7D%20e%5E%7B-j%202%5Cpi%5Cfrac%7Bk%7D%7BL%7Dm%7D%20%20%5C%5C%0A%20%20%20%20%20%20%20%20%26%3D%20%5Csum_%7Bm%3D0%7D%5E%7BL-1%7D%20e%5E%7B-j%20%5Cfrac%7B%5Cpi%20u%20m%20(m%2B1)%2B2%5Cpi%20km%7D%7BL%7D%7D%20%20%20%5Ctag%7B1%7D%0A%5Cend%7Balign%7D



找一个自然数 v, 使得 uv mod L = 1, 构造一个表达式:

e%5E%7Bj%5Cfrac%7B%5Cpi%20u%20%5Ccolor%7Bred%7D%7Bvk%7D(%5Ccolor%7Bred%7D%7Bvk%7D%2B1)%7D%7BL%7D%7D



把公式 (1) 中提取出上式:  

Y%5Bk%5D%3De%5E%7Bj%5Cfrac%7B%5Cpi%20u%20%5Ccolor%7Bred%7D%7Bvk%7D(%5Ccolor%7Bred%7D%7Bvk%7D%2B1)%7D%7BL%7D%7D%0A%20%20%20%20%20%20%5Csum_%7Bm%3D0%7D%5E%7BL-1%7D%20e%5E%7B-j%20%5Cfrac%7B%5Cpi%20um(m%2B1)%2B2%5Cpi%20km%20%2B%20%5Cpi%20u%20%5Ccolor%7Bred%7D%7Bvk%7D%20(%20%5Ccolor%7Bred%7D%7Bvk%7D%2B1)%7D%7BL%7D%7D


因为 uv 模 L 余 1, 所以,可以把 uv 乘在分子的任何一项上,容易证明,乘完之后不改变原等式.  

%5Cbegin%7Balign%7D%0AY%5Bk%5D%20%26%3De%5E%7Bj%5Cfrac%7B%5Cpi%20u%20%5Ccolor%7Bred%7D%7Bvk%7D(%5Ccolor%7Bred%7D%7Bvk%7D%2B1)%7D%7BL%7D%7D%0A%20%20%20%20%20%20%20%5Csum_%7Bm%3D0%7D%5E%7BL-1%7D%20e%5E%7B-j%20%5Cfrac%7B%5Cpi%20um(m%2B1)%2B2%5Cpi%20km%20%5Ccolor%7Bblue%7D%7Buv%7D%20%2B%20%5Cpi%20u%20%5Ccolor%7Bred%7D%7Bvk%7D%20(%20%5Ccolor%7Bred%7D%7Bvk%7D%2B1)%7D%7BL%7D%7D%20%20%5C%5C%0A%20%20%20%20%20%26%3De%5E%7Bj%5Cfrac%7B%5Cpi%20u%20%5Ccolor%7Bred%7D%7Bvk%7D(%5Ccolor%7Bred%7D%7Bvk%7D%2B1)%7D%7BL%7D%7D%0A%20%20%20%20%20%20%20%20%5Csum_%7Bm%3D0%7D%5E%7BL-1%7D%20e%5E%7B-j%20%5Cpi%20u%20%5Cfrac%7B%20m(m%2B1)%2B2%20km%20%5Ccolor%7Bblue%7D%7Bv%7D%20%2B%20%20%5Ccolor%7Bred%7D%7Bvk%7D%20(%20%5Ccolor%7Bred%7D%7Bvk%7D%2B1)%7D%7BL%7D%7D%20%20%5C%5C%0A%5Cend%7Balign%7D



其中  

m(m%2B1)%2B2kmv%2Bvk(vk%2B1)%3Dm%5E2%2B(2kv%2B1)m%2Bvk(vk%2B1)%3D(m%2Bvk)(m%2Bvk%2B1)


所以  

Y%5Bk%5D%3De%5E%7Bj%5Cfrac%7B%5Cpi%20u%20%5Ccolor%7Bred%7D%7Bvk%7D(%5Ccolor%7Bred%7D%7Bvk%7D%2B1)%7D%7BL%7D%7D%0A%20%20%20%20%20%20%20%20%5Csum_%7Bm%3D0%7D%5E%7BL-1%7D%20e%5E%7B-j%20%5Cpi%20u%20%5Cfrac%7B(m%2Bvk)(m%2Bvk%2B1)%7D%7BL%7D%7D


上式中的求和项, 也是一个 zadoff 码, 因为 zadoff 码是以 L 为周期的周期函数, 所以,第二个求和项可以等价替换:  

Y%5Bk%5D%3De%5E%7Bj%5Cfrac%7B%5Cpi%20u%20%5Ccolor%7Bred%7D%7Bvk%7D(%5Ccolor%7Bred%7D%7Bvk%7D%2B1)%7D%7BL%7D%7D%0A%20%20%20%20%20%20%20%20%5Csum_%7Bm%3D0%7D%5E%7BL-1%7D%20e%5E%7B-j%20%5Cpi%20u%20%5Cfrac%7Bm(m%2B1)%7D%7BL%7D%7D


当 k=0 时:

%20%20Y%5B0%5D%3D%5Csum_%7Bm%3D0%7D%5E%7BL-1%7D%20e%5E%7B-j%20%5Cpi%20u%20%5Cfrac%7Bm(m%2B1)%7D%7BL%7D%7D


当 k = 1 时,

Y%5B1%5D%3De%5E%7Bj%5Cfrac%7B%5Cpi%20u%20v(v%2B1)%7D%7BL%7D%7D%0A%20%20%20%20%20%20%20%20%5Csum_%7Bm%3D0%7D%5E%7BL-1%7D%20e%5E%7B-j%20%5Cpi%20u%20%5Cfrac%7Bm(m%2B1)%7D%7BL%7D%7D%20%20%3De%5E%7Bj%5Cfrac%7B%5Cpi%20u%20v(v%2B1)%7D%7BL%7D%7D%20%20Y%5B0%5D%3Dx_u%5E%7B*%7D(v)Y%5B0%5D


其中 x_u%5E%7B*%7D(v) 表示 x_u(v) 的共轭  
可以看到,Y[k] 可以用 Y[0] 和 某一个%20x_u(m) 的共轭相乘即可得到, 这要比 DFT 的计算量要少很多,即使与 FFT 比较也计算量要少不少

依次类推,

当 k = 2 时,

Y%5B2%5D%3De%5E%7Bj%5Cfrac%7B%5Cpi%20u%202v(2v%2B1)%7D%7BL%7D%7D%0A%20%20%20%20%20%20%20%20%5Csum_%7Bm%3D0%7D%5E%7BL-1%7D%20e%5E%7B-j%20%5Cpi%20u%20%5Cfrac%7Bm(m%2B1)%7D%7BL%7D%7D%20%20%3De%5E%7Bj%5Cfrac%7B%5Cpi%20u%202v(2v%2B1)%7D%7BL%7D%7D%20%20Y%5B0%5D%3Dx_u%5E%7B*%7D((2v)mod%20%5C%20L)%5C%20Y%5B0%5D


一般化:

Y%5Bk%5D%3De%5E%7Bj%5Cfrac%7B%5Cpi%20u%20%5Ccolor%7Bred%7D%7Bvk%7D(%5Ccolor%7Bred%7D%7Bvk%7D%2B1)%7D%7BL%7D%7D%0A%20%20%20%20%20%20%20%20%5Csum_%7Bm%3D0%7D%5E%7BL-1%7D%20e%5E%7B-j%20%5Cpi%20u%20%5Cfrac%7Bm(m%2B1)%7D%7BL%7D%7D%20%3De%5E%7Bj%5Cfrac%7B%5Cpi%20u%20%5Ccolor%7Bred%7D%7Bvk%7D(%5Ccolor%7Bred%7D%7Bvk%7D%2B1)%7D%7BL%7D%7D%20%20Y(0)%20%3Dx_u%5E%7B*%7D((kv)mod%20%5C%20L)%5C%20Y%5B0%5D


zadoff 码的超级快速的傅立叶变换的评论 (共 条)

分享到微博请遵守国家法律