欢迎光临散文网 会员登陆 & 注册

椭圆第二定义的证明方法(2018课标Ⅲ圆锥曲线)

2022-08-25 18:02 作者:数学老顽童  | 我要投稿


解:(1)易知%5Ccolor%7Bred%7D%7BM%7D在椭圆内部

所以%5Ccolor%7Bred%7D%7B%5Cfrac%7B1%5E2%7D%7B4%7D%2B%5Cfrac%7Bm%5E2%7D%7B3%7D%3C1%7D,

解得-%5Cfrac%7B3%7D%7B2%7D%3Cm%3C%5Cfrac%7B3%7D%7B2%7D

又因m%3E0

所以%5Ccolor%7Bred%7D%7B0%3Cm%3C%5Cfrac%7B3%7D%7B2%7D%7D……%5Cotimes%20

AB的坐标分别为%5Cleft(%20x_1%2Cy_1%20%5Cright)%20%5Cleft(%20x_2%2Cy_2%20%5Cright)%20

因为AB在椭圆C上,

所以%5Cfrac%7Bx_%7B1%7D%5E%7B2%7D%7D%7B4%7D%2B%5Cfrac%7By_%7B1%7D%5E%7B2%7D%7D%7B3%7D%3D1%5Cfrac%7Bx_%7B2%7D%5E%7B2%7D%7D%7B4%7D%2B%5Cfrac%7By_%7B2%7D%5E%7B2%7D%7D%7B3%7D%3D1

两式相减(即点差法)得

%5Cfrac%7Bx_%7B1%7D%5E%7B2%7D-x_%7B2%7D%5E%7B2%7D%7D%7B4%7D%2B%5Cfrac%7By_%7B1%7D%5E%7B2%7D-y_%7B2%7D%5E%7B2%7D%7D%7B3%7D%3D0

%5Cfrac%7By_%7B1%7D%5E%7B2%7D-y_%7B2%7D%5E%7B2%7D%7D%7B3%7D%3D-%5Cfrac%7Bx_%7B1%7D%5E%7B2%7D-x_%7B2%7D%5E%7B2%7D%7D%7B4%7D

%5Cfrac%7By_%7B1%7D%5E%7B2%7D-y_%7B2%7D%5E%7B2%7D%7D%7Bx_%7B1%7D%5E%7B2%7D-x_%7B2%7D%5E%7B2%7D%7D%3D-%5Cfrac%7B3%7D%7B4%7D

%5Cfrac%7B%5Cleft(%20y_1%2By_2%20%5Cright)%20%5Cleft(%20y_1-y_2%20%5Cright)%7D%7B%5Cleft(%20x_1%2Bx_2%20%5Cright)%20%5Cleft(%20x_1-x_2%20%5Cright)%7D%3D-%5Cfrac%7B3%7D%7B4%7D

%5Cfrac%7B2m%5Ccdot%20%5Cleft(%20y_1-y_2%20%5Cright)%7D%7B2%5Ccdot%20%5Cleft(%20x_1-x_2%20%5Cright)%7D%3D-%5Cfrac%7B3%7D%7B4%7D

%5Cfrac%7Bm%5Ccdot%20%5Cleft(%20y_1-y_2%20%5Cright)%7D%7Bx_1-x_2%7D%3D-%5Cfrac%7B3%7D%7B4%7D

m%5Ccdot%20k%3D-%5Cfrac%7B3%7D%7B4%7D

所以k%3D-%5Cfrac%7B3%7D%7B4m%7D

%5Cotimes%20可知:k%3C-%5Cfrac%7B1%7D%7B2%7D,证毕.

(2)先画图

P的坐标为%5Cleft(%20x_3%2Cy_3%20%5Cright)%20

易知F的坐标为%5Cleft(%201%2C0%20%5Cright)%20,所以

%5Cleft%7C%20%5Coverrightarrow%7BFA%7D%20%5Cright%7C%3D%5Cleft(%20x_1-1%2Cy_1%20%5Cright)

%5Cleft%7C%20%5Coverrightarrow%7BFB%7D%20%5Cright%7C%3D%5Cleft(%20x_2-1%2Cy_2%20%5Cright)

%5Cleft%7C%20%5Coverrightarrow%7BFP%7D%20%5Cright%7C%3D%5Cleft(%20x_3-1%2Cy_3%20%5Cright)

所以

%5Cleft(%20x_1-1%2Cy_1%20%5Cright)%20%2B%5Cleft(%20x_2-1%2Cy_2%20%5Cright)%20%2B%5Cleft(%20x_3-1%2Cy_3%20%5Cright)%20%3D%5Cmathbf%7B0%7D

%5Cleft(%20x_1%2Bx_2%2Bx_3-3%2Cy_1%2By_2%2By_3%20%5Cright)%20%3D%5Cmathbf%7B0%7D

%5Cbegin%7Bcases%7D%09x_1%2Bx_2%2Bx_3-3%3D0%2C%5C%5C%09y_1%2By_2%2By_3%3D0%2C%5C%5C%5Cend%7Bcases%7D

%5Cbegin%7Bcases%7D%092%5Ctimes%201%2Bx_3-3%3D0%2C%5C%5C%092%5Ccdot%20m%2By_3%3D0%2C%5C%5C%5Cend%7Bcases%7D

%5Cbegin%7Bcases%7D%09x_3%3D1%2C%5C%5C%09y_3%3D-2m%2C%5C%5C%5Cend%7Bcases%7D

所以P的坐标为%5Cleft(%201%2C-2m%20%5Cright)%20

又因为点P在椭圆C上,所以

%5Cfrac%7B1%5E2%7D%7B4%7D%2B%5Cfrac%7B%5Cleft(%20-2m%20%5Cright)%20%5E2%7D%7B3%7D%3D1

解得m%3D%5Cfrac%7B3%7D%7B4%7D

所以P的坐标为%5Cleft(%201%2C-%5Cfrac%7B3%7D%7B2%7D%20%5Cright)%20.

所以%5Cleft%7C%20%5Coverrightarrow%7BFP%7D%20%5Cright%7C%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7B3%7D%7B2%7D%7D.

%5Cbegin%7Baligned%7D%09%5Cleft%7C%20%5Coverrightarrow%7BFA%7D%20%5Cright%7C%26%3D%5Csqrt%7B%5Cleft(%20x_1-1%20%5Cright)%20%5E2%2By_%7B1%7D%5E%7B2%7D%7D%5C%5C%09%26%3D%5Csqrt%7B%5Cleft(%20x_1-1%20%5Cright)%20%5E2%2B3%5Cleft(%201-%5Cfrac%7Bx_%7B1%7D%5E%7B2%7D%7D%7B4%7D%20%5Cright)%7D%5C%5C%09%26%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7B1%7D%7B2%7D%7D%5Cleft%7C%20x_1-4%20%5Cright%7C%5C%5C%09%26%3D2-%5Cfrac%7B1%7D%7B2%7Dx_1%5C%5C%5Cend%7Baligned%7D

注意此处的操作,实际上证明了椭圆的第二定义

同理可得%5Cleft%7C%20%5Coverrightarrow%7BFB%7D%20%5Cright%7C%3D2-%5Cfrac%7B1%7D%7B2%7Dx_2.

所以

%5Cbegin%7Baligned%7D%09%5Cleft%7C%20%5Coverrightarrow%7BFA%7D%20%5Cright%7C%2B%5Cleft%7C%20%5Coverrightarrow%7BFB%7D%20%5Cright%7C%26%3D2-%5Cfrac%7B1%7D%7B2%7Dx_1%2B2-%5Cfrac%7B1%7D%7B2%7Dx_2%5C%5C%09%26%3D4-%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20x_1%2Bx_2%20%5Cright)%5C%5C%09%26%3D4-%5Cfrac%7B1%7D%7B2%7D%5Ctimes%202%3D%5Ccolor%7Bred%7D%7B3%7D%5C%5C%5Cend%7Baligned%7D

所以%5Cleft%7C%20%5Coverrightarrow%7BFA%7D%20%5Cright%7C%2B%5Cleft%7C%20%5Coverrightarrow%7BFB%7D%20%5Cright%7C%3D2%5Cleft%7C%20%5Coverrightarrow%7BFP%7D%20%5Cright%7C

%5Cleft%7C%20%5Coverrightarrow%7BFA%7D%20%5Cright%7C%5Cleft%7C%20%5Coverrightarrow%7BFP%7D%20%5Cright%7C%5Cleft%7C%20%5Coverrightarrow%7BFB%7D%20%5Cright%7C成等差数列.

M的坐标为%5Cleft(%201%2C%5Cfrac%7B3%7D%7B4%7D%20%5Cright)%20

k%3D-%5Cfrac%7B3%7D%7B4m%7D%3D-%5Cfrac%7B3%7D%7B4%5Ctimes%20%5Cfrac%7B3%7D%7B4%7D%7D%3D-1

l的方程为y-%5Cfrac%7B3%7D%7B4%7D%3D-1%5Ctimes%20%5Cleft(%20x-1%20%5Cright)%20

y%3D%5Cfrac%7B7%7D%7B4%7D-x

C的方程联立,得x%5E2-2x%2B%5Cfrac%7B1%7D%7B28%7D%3D0

所以x_1x_2%3D%5Cfrac%7B1%7D%7B28%7D.

所以数列%5Cleft%7C%20%5Coverrightarrow%7BFA%7D%20%5Cright%7C%5Cleft%7C%20%5Coverrightarrow%7BFP%7D%20%5Cright%7C%5Cleft%7C%20%5Coverrightarrow%7BFB%7D%20%5Cright%7C的公差

%5Cbegin%7Baligned%7D%0A%09d%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft(%20%5Cleft%7C%20%5Coverrightarrow%7BFB%7D%20%5Cright%7C-%5Cleft%7C%20%5Coverrightarrow%7BFA%7D%20%5Cright%7C%20%5Cright)%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Cleft%5B%20%5Cleft(%202-%5Cfrac%7B1%7D%7B2%7Dx_2%20%5Cright)%20-%5Cleft(%202-%5Cfrac%7B1%7D%7B2%7Dx_1%20%5Cright)%20%5Cright%5D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B4%7D%5Cleft(%20x_1-x_2%20%5Cright)%5C%5C%0A%09%26%3D%5Cpm%20%5Cfrac%7B1%7D%7B4%7D%5Csqrt%7B%5Cleft(%20x_1%2Bx_2%20%5Cright)%20%5E2-4x_1x_2%7D%5C%5C%0A%09%26%3D%5Cpm%20%5Cfrac%7B1%7D%7B4%7D%5Csqrt%7B2%5E2-4%5Ctimes%20%5Cfrac%7B1%7D%7B28%7D%7D%3D%5Ccolor%7Bred%7D%7B%5Cpm%20%5Cfrac%7B3%5Csqrt%7B21%7D%7D%7B28%7D%7D%5C%5C%0A%5Cend%7Baligned%7D



椭圆第二定义的证明方法(2018课标Ⅲ圆锥曲线)的评论 (共 条)

分享到微博请遵守国家法律