ApacheCN 机器学习实战讲义 六、支持向量机

支持向量机 概述
支持向量机(Support Vector Machines, SVM):是一种机器学习算法。 支持向量(Support Vector)就是离分隔超平面最近的那些点。 机(Machine)就是表示一种算法,而不是表示机器。
支持向量机 场景
要给左右两边的点进行分类
明显发现:选择D会比B、C分隔的效果要好很多。

支持向量机 原理
SVM 工作原理

对于上述的苹果和香蕉,我们想象为2种水果类型的炸弹。(保证距离最近的炸弹,距离它们最远)
寻找最大分类间距
转而通过拉格朗日函数求优化的问题
数据可以通过画一条直线就可以将它们完全分开,这组数据叫
线性可分(linearly separable)
数据,而这条分隔直线称为分隔超平面(separating hyperplane)
。如果数据集上升到1024维呢?那么需要1023维来分隔数据集,也就说需要N-1维的对象来分隔,这个对象叫做
超平面(hyperlane)
,也就是分类的决策边界。

阅读全文:http://ml.apachecn.org/mlia/svm/