借助电路分析与仿真理解EMI

对于EMI问题,传统的解决方法是基于实际的评估板进行调试和优化(如图1左图所示),但这种手段往往有很多局限,而且往往会带来很多的时间成本和不确定性。如果可以事先对EMI进行建模和仿真,就有助于评估各个因素对于EMI的影响,从而提高整改效率,甚至可以预先对EMI进行设计(如图1右图所示)。在本次的分享中,对于传导和辐射EMI,我们分别介绍了主要影响EMI的因素,以及如何通过电路仿真来得到EMI频谱。

一、EMI电路仿真模型
在EMI仿真中,我们实际需要得到的,是在EMI接收机上面的结果。对于传导EMI来说,这个结果是LISN上的电压,对于辐射EMI来说,这个结果则是测试天线测到的电场强度。因此,要使得仿真模型与EMI测试结果吻合,首先要在仿真中模拟出测试中的真实情况。
在之前的分享中(非隔离型变换器电磁干扰(EMI)的分析与建模方法),我们介绍了EMI模型如何推导,以及模型中各个元件的高频阻抗如何得到。在图2中,我们直接以一个buck电路为例,给出使用替代定理之后得到的EMI模型。
在仿真中,我们主要需要得到的是以下参数(如图2所示):
传导EMI:电源线和地线LISN上的电压VP, VN。
高频(30MHz以上)辐射EMI:变换器的等效共模电压VCM。
低频(30MHz以内)辐射EMI:变换器的等效共模电压VCM以及电感上的压降VL。

因此,可以看出,只要有噪声源IS1, VS2的值,我们即可通过时域仿真得到Vp,Vn,VCM,VL等参数,再经过后续处理,就能得到想要的结果了。多数的电路仿真软件都可以实现这一目的。需要注意的是,在传导测试和辐射测试中,由于测试布置不同,仿真中的一些杂散参数(如ZP, ZOUT等)也是不同的,需要分别进行提取。
在实际仿真中,我们一般有两种方式得到IS1, VS2的值。一是在测量中直接测出SW电压和开关管电流,将数据导入仿真软件进行仿真;二是将开关管的模型也加入仿真,在仿真中直接得到结果。目前,前者的应用较为普遍。后者往往需要芯片的EMI模型,因此也需要芯片供应商的支持。无论用哪种方法,为了提高数据处理的分辨率,都需要有足够长的仿真时长。如果需要仿真出抖频对于EMI结果的影响,需要至少仿真一到两个抖频周期。
二、传导EMI的仿真处理
根据电路仿真的结果,我们可以得到VP和VN。但是,EMI的最终结果是在频域上体现的,因此,我们需要将时域波形转为频域波形。另外,如果需要共模噪声和差模噪声,在仿真后可以根据等式(1)、(2)对VP和VN进行后续处理,得到VCM(共模电压)和VDM(差模电压)。另外,也可以通过交流分析来得到噪声源和噪声之间对应的传递函数。

图3展示了仿真所需要的输入参数和输出参数。

如果仿真软件自带EMI接收机或者频谱仪,我们可以根据测试标准,来设置它的参数(如RBW, QP/AV detector等)。否则,我们可以对时域数据进行处理[1],来得到和EMI接收机相似的结果。图4为一个非隔离变换器的传导仿真和实际测试的结果对比示例。在准确提取EMI元件和PCB阻抗的前提下,EMI仿真可以较为准确地预测一个变换器的传导EMI结果。

三、高频(30MHz以上)辐射EMI的仿真手段
高频辐射EMI中,测试板的输入、输出线缆形成了一个双极天线,它产生的辐射占主导地位。图2中的VCM即为双极天线的激励源。如(3)所示,如果我们知道双极天线的激励到接收天线的传递函数GCable,我们就知道了EMI接收机上能够测到的电压信号VRE。它的频谱即为辐射EMI的结果。

公式(3)中的VCM的频谱可以通过电路仿真得到。而GCable可以通过测试得到。在EMI测试中,线束长度往往是确定的,我们可以根据EMI标准规定的线束长度和摆放方式,在输入和输出线之间加一个单位激励,根据EMI接收机得到的频谱来得到GCable。由此,最后的EMI结果就可以得到了。图5为高频辐射EMI电路仿真需要的输入参数和输出参数。
继续阅读 >>>请复制下方链接进入MPS官网查看研讨会视频并下载课件:
https://www.monolithicpower.cn/202306_2