(初一)数学题分享




解:xy+yz+xz=(x+y+z)²-(x²+y²+z²)/2=-6
x²y²+y²z²+x²z²=(xy+yz+xz)²-2xyz(x+y+z)=32
则原式=1/-6-yz-xz+2z+1/-6-xy-xz+2z+1/6-xy-yz+2y
=1/-6-z(x+y-2)+1/-6-x(y+z-2)+1/-6-y(x+z-2)
=1/z²-6+1/x²-6+1/y²-6
=(x²-6)(y²-6)+(z²-6)(y²-6)+(x²-6)(z²-6)/(x²-6)(y²-6)(z²-6)
=x²y²+y²z²+x²z²-12(x²+y²+z²)+108/x²y²z²-6(x²y²+y²z²+x²z²)+36(x²+y²+z²)-216
=32-12×16+108/1-6×32+36×16-216
=-4/13
