欢迎光临散文网 会员登陆 & 注册

柯西不等式,用过都说好(2022浙江圆锥曲线)

2022-08-31 17:49 作者:数学老顽童  | 我要投稿

(2022浙江,21)如图,已知椭圆%5Cfrac%7Bx%5E2%7D%7B12%7D%2By%5E2%3D1,设AB是椭圆上异于P%5Cleft(%200%2C1%20%5Cright)%20的两点,且点Q%5Cleft(%200%2C%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20在线段AB上,直线PAPB分别交直线y%3D-%5Cfrac%7B1%7D%7B2%7Dx%2B3CD两点.

(1)求点P到椭圆上点的距离的最大值;

(2)求%5Cleft%7C%20CD%20%5Cright%7C的最小值.

解:(1)在椭圆上任取一点M%5Cleft(%20x_0%2Cy_0%20%5Cright)%20,则

%5Cbegin%7Baligned%7D%0A%09%5Cleft%7C%20PM%20%5Cright%7C%26%3D%5Csqrt%7Bx_%7B0%7D%5E%7B2%7D%2B%5Cleft(%20y_0-1%20%5Cright)%20%5E2%7D%5C%5C%0A%09%26%3D%5Csqrt%7B12%5Cleft(%201-y_%7B0%7D%5E%7B2%7D%20%5Cright)%20%2B%5Cleft(%20y_0-1%20%5Cright)%20%5E2%7D%5C%5C%0A%09%26%3D%5Csqrt%7B-11y_%7B0%7D%5E%7B2%7D-2y_0%2B13%7D%5C%5C%0A%09%26%5Cleqslant%20%5Csqrt%7B%5Cfrac%7B4%5Ctimes%20%5Cleft(%20-11%20%5Cright)%20%5Ctimes%2013-%5Cleft(%20-2%20%5Cright)%20%5E2%7D%7B4%5Ctimes%20%5Cleft(%20-11%20%5Cright)%7D%7D%5C%5C%0A%09%26%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7B12%7D%7B%5Csqrt%7B11%7D%7D%7D%5C%5C%0A%5Cend%7Baligned%7D

当且仅当%5Ccolor%7Bred%7D%7By_0%7D%3D-%5Cfrac%7B-2%7D%7B2%5Ctimes%20%5Cleft(%20-11%20%5Cright)%7D%3D%5Ccolor%7Bred%7D%7B-%5Cfrac%7B1%7D%7B11%7D%7D时取得最大值.

(2)设直线PAPB的方程分别为

y%3Dk_1x%2B1y%3Dk_2x%2B1

AB的坐标分别为%5Cleft(%20x_1%2Cy_1%20%5Cright)%20%5Cleft(%20x_2%2Cy_2%20%5Cright)%20

椭圆的方程可改写为

%5Cfrac%7Bx%5E2%7D%7B12%7D%2B%5Cleft(%20y-1%20%5Cright)%20%5E2%2B2y-1%3D1

整理得

%5Ccolor%7Bred%7D%7B%5Cfrac%7Bx%5E2%7D%7B12%7D%2B%5Cleft(%20y-1%20%5Cright)%20%5E2%2B2%5Cleft(%20y-1%20%5Cright)%20%3D0%7D

设直线AB的方程为mx%2Bn%5Cleft(%20y-1%20%5Cright)%20%3D1

因为QAB上,

所以m%5Ccdot%200%2Bn%5Cleft(%20%5Cfrac%7B1%7D%7B2%7D-1%20%5Cright)%20%3D1

解得n%3D-2

所以AB的方程为%5Ccolor%7Bred%7D%7Bmx-2%5Cleft(%20y-1%20%5Cright)%20%3D1%7D

与椭圆联立,得

%5Cfrac%7Bx%5E2%7D%7B12%7D%2B%5Cleft(%20y-1%20%5Cright)%20%5E2%2B2%5Cleft(%20y-1%20%5Cright)%20%5Cleft%5B%20mx-2%5Cleft(%20y-1%20%5Cright)%20%5Cright%5D%20%3D0

展开

%5Cfrac%7Bx%5E2%7D%7B12%7D%2B%5Cleft(%20y-1%20%5Cright)%20%5E2%2B2mx%5Cleft(%20y-1%20%5Cright)%20-4%5Cleft(%20y-1%20%5Cright)%20%5E2%3D0

并项

3%5Cleft(%20y-1%20%5Cright)%20%5E2-2mx%5Cleft(%20y-1%20%5Cright)%20-%5Cfrac%7Bx%5E2%7D%7B12%7D%3D0

各项同除以x%5E2,得

%5Ccolor%7Bred%7D%7B3%5Ccdot%20%5Cleft(%20%5Cfrac%7By-1%7D%7Bx%7D%20%5Cright)%20%5E2-2m%5Ccdot%20%5Cfrac%7By-1%7D%7Bx%7D-%5Cfrac%7B1%7D%7B12%7D%3D0%7D

所以

%5Ccolor%7Bred%7D%7Bk_1%2Bk_2%7D%3D%5Cfrac%7By_1-1%7D%7Bx_1%7D%2B%5Cfrac%7By_2-1%7D%7Bx_2%7D%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7B2m%7D%7B3%7D%7D

%5Ccolor%7Bred%7D%7Bk_1k_2%7D%3D%5Cfrac%7By_1-1%7D%7Bx_1%7D%5Ccdot%20%5Cfrac%7By_2-1%7D%7Bx_2%7D%3D%5Ccolor%7Bred%7D%7B-%5Cfrac%7B1%7D%7B36%7D%7D

联立直线PA与直线y%3D-%5Cfrac%7B1%7D%7B2%7Dx%2B3

解得x_C%3D%5Cfrac%7B4%7D%7B2k_1%2B1%7D

同理x_D%3D%5Cfrac%7B4%7D%7B2k_2%2B1%7D

所以

%5Cbegin%7Baligned%7D%0A%09%5Cleft%7C%20CD%20%5Cright%7C%26%3D%5Csqrt%7B%5Cleft(%20-%5Cfrac%7B1%7D%7B2%7D%20%5Cright)%20%5E2%2B1%7D%5Ccdot%20%5Cleft%7C%20x_C-x_D%20%5Cright%7C%5C%5C%0A%09%26%3D%5Cfrac%7B%5Csqrt%7B5%7D%7D%7B2%7D%5Ccdot%20%5Cleft%7C%20%5Cfrac%7B4%7D%7B2k_1%2B1%7D-%5Cfrac%7B4%7D%7B2k_2%2B1%7D%20%5Cright%7C%5C%5C%0A%09%26%3D4%5Csqrt%7B5%7D%5Ccdot%20%5Cleft%7C%20%5Cfrac%7Bk_1-k_2%7D%7B4k_1k_2%2B2%5Cleft(%20k_1%2Bk_2%20%5Cright)%20%2B1%7D%20%5Cright%7C%5C%5C%0A%09%26%3D4%5Csqrt%7B5%7D%5Ccdot%20%5Cfrac%7B%5Csqrt%7B%5Cleft(%20k_1%2Bk_2%20%5Cright)%20%5E2-4k_1k_2%7D%7D%7B%5Cleft%7C%204k_1k_2%2B2%5Cleft(%20k_1%2Bk_2%20%5Cright)%20%2B1%20%5Cright%7C%7D%5C%5C%0A%09%26%3D4%5Csqrt%7B5%7D%5Ccdot%20%5Cfrac%7B%5Csqrt%7B%5Cleft(%20%5Ccolor%7Bred%7D%7B%5Cfrac%7B2m%7D%7B3%7D%7D%20%5Cright)%20%5E2-4%5Ctimes%20%5Cleft(%5Ccolor%7Bred%7D%7B%20-%5Cfrac%7B1%7D%7B36%7D%7D%20%5Cright)%7D%7D%7B%5Cleft%7C%204%5Ctimes%20%5Cleft(%20%5Ccolor%7Bred%7D%7B-%5Cfrac%7B1%7D%7B36%7D%7D%20%5Cright)%20%2B2%5Ccdot%20%5Ccolor%7Bred%7D%7B%5Cfrac%7B2m%7D%7B3%7D%7D%2B1%20%5Cright%7C%7D%5C%5C%0A%09%26%3D%5Ccolor%7Bred%7D%7B3%5Csqrt%7B5%7D%5Ccdot%20%5Cfrac%7B%5Csqrt%7B4m%5E2%2B1%7D%7D%7B%5Cleft%7C%203m%2B2%20%5Cright%7C%7D%7D%5C%5C%0A%09%26%3D3%5Csqrt%7B5%7D%5Ccdot%20%5Cfrac%7B%5Csqrt%7B%5Ccolor%7Bred%7D%7B%5Cleft%5B%20%5Cleft(%202m%20%5Cright)%20%5E2%2B1%5E2%20%5Cright%5D%20%5Ccdot%20%5Cleft%5B%20%5Cleft(%20%5Cfrac%7B3%7D%7B2%7D%20%5Cright)%20%5E2%2B2%5E2%20%5Cright%5D%20%5Ccdot%20%5Cfrac%7B4%7D%7B25%7D%7D%7D%7D%7B%5Cleft%7C%203m%2B2%20%5Cright%7C%7D%5C%5C%0A%09%26%5Cgeqslant%203%5Csqrt%7B5%7D%5Ccdot%20%5Cfrac%7B%5Csqrt%7B%5Ccolor%7Bred%7D%7B%5Cleft(%202m%5Ccdot%20%5Cfrac%7B3%7D%7B2%7D%2B1%5Ctimes%202%20%5Cright)%20%5E2%5Ccdot%20%5Cfrac%7B4%7D%7B25%7D%7D%7D%7D%7B%5Cleft%7C%203m%2B2%20%5Cright%7C%7D%5C%5C%0A%09%26%3D3%5Csqrt%7B5%7D%5Ccdot%20%5Cfrac%7B%5Csqrt%7B%5Cleft(%203m%2B2%20%5Cright)%20%5E2%5Ccdot%20%5Cfrac%7B4%7D%7B25%7D%7D%7D%7B%5Cleft%7C%203m%2B2%20%5Cright%7C%7D%5C%5C%0A%09%26%3D3%5Csqrt%7B5%7D%5Ctimes%20%5Cfrac%7B2%7D%7B5%7D%5Ccdot%20%5Cfrac%7B%5Cleft%7C%203m%2B2%20%5Cright%7C%7D%7B%5Cleft%7C%203m%2B2%20%5Cright%7C%7D%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7B6%5Csqrt%7B5%7D%7D%7B5%7D%7D%5C%5C%0A%5Cend%7Baligned%7D

当且仅当%5Cfrac%7B2m%7D%7B1%7D%3D%5Cfrac%7B%5Cfrac%7B3%7D%7B2%7D%7D%7B2%7D,即%5Ccolor%7Bred%7D%7Bm%3D%5Cfrac%7B3%7D%7B8%7D%7D时,取得最小值.

柯西不等式,用过都说好(2022浙江圆锥曲线)的评论 (共 条)

分享到微博请遵守国家法律