欢迎光临散文网 会员登陆 & 注册

双重根式化简代数小结论及证明

2021-05-05 12:00 作者:现代微积分  | 我要投稿

公式如下:

%5Csqrt%7Ba%2B%5Csqrt%7Bb%7D%20%7D%20%0A%3D%5Csqrt%7B%5Cfrac%7Ba%2B%5Csqrt%7Ba%5E2-b%7D%20%7D%7B2%7D%20%7D%20%2B%5Csqrt%7B%5Cfrac%7Ba-%5Csqrt%7Ba%5E2-b%7D%20%7D%7B2%7D%20%7D%20

%5Csqrt%7Ba-%5Csqrt%7Bb%7D%20%7D%20%0A%3D%5Csqrt%7B%5Cfrac%7Ba%2B%5Csqrt%7Ba%5E2-b%7D%20%7D%7B2%7D%20%7D%20-%5Csqrt%7B%5Cfrac%7Ba-%5Csqrt%7Ba%5E2-b%7D%20%7D%7B2%7D%20%7D%20

证明过程:

%5Cbegin%7Barray%7D%0A%5C%5C%5Csqrt%7Ba%2B%5Csqrt%7Bb%7D%7D%20%2B%5Csqrt%7Ba-%5Csqrt%7Bb%7D%7D%0A%5C%5C%3D%5Csqrt%7B%7B(%5Csqrt%7Ba%2B%5Csqrt%7Bb%7D%7D%20%2B%5Csqrt%7Ba-%5Csqrt%7Bb%7D%7D)%7D%5E%7B2%7D%20%7D%20%0A%5C%5C%3D%5Csqrt%7Ba%2B%5Csqrt%7Bb%7D%2B2%5Csqrt%7Ba%5E2-b%7D%2Ba-%5Csqrt%7Bb%7D%20%7D%20%0A%5C%5C%3D%5Csqrt%7B2a%2B2%5Csqrt%7Ba%5E2-b%7D%7D%20%0A%5C%5C%3D2%5Csqrt%7B%5Cfrac%7Ba%2B%5Csqrt%7Ba%5E2-b%7D%20%7D%7B2%7D%20%7D%20%0A%5Cend%7Barray%7D


%5Cbegin%7Barray%7D%0A%5C%5C%5Csqrt%7Ba%2B%5Csqrt%7Bb%7D%7D%20-%5Csqrt%7Ba-%5Csqrt%7Bb%7D%7D%0A%5C%5C%3D%5Csqrt%7B%7B(%5Csqrt%7Ba%2B%5Csqrt%7Bb%7D%7D%20-%5Csqrt%7Ba-%5Csqrt%7Bb%7D%7D)%7D%5E%7B2%7D%20%7D%20%0A%5C%5C%3D%5Csqrt%7Ba%2B%5Csqrt%7Bb%7D-2%5Csqrt%7Ba%5E2-b%7D%2Ba-%5Csqrt%7Bb%7D%20%7D%20%0A%5C%5C%3D%5Csqrt%7B2a-2%5Csqrt%7Ba%5E2-b%7D%7D%20%0A%5C%5C%3D2%5Csqrt%7B%5Cfrac%7Ba-%5Csqrt%7Ba%5E2-b%7D%20%7D%7B2%7D%20%7D%20%0A%5Cend%7Barray%7D


%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%0A%20%20%5Csqrt%7Ba%2B%5Csqrt%7Bb%7D%7D%20%2B%5Csqrt%7Ba-%5Csqrt%7Bb%7D%7D%3D2%5Csqrt%7B%5Cfrac%7Ba%2B%5Csqrt%7Ba%5E2-b%7D%20%7D%7B2%7D%20%7D%7B%E2%91%A0%7D%20%5C%5C%0A%5Csqrt%7Ba%2B%5Csqrt%7Bb%7D%7D%20-%5Csqrt%7Ba-%5Csqrt%7Bb%7D%7D%3D2%5Csqrt%7B%5Cfrac%7Ba-%5Csqrt%7Ba%5E2-b%7D%20%7D%7B2%7D%20%7D%20%7B%E2%91%A1%7D%0A%5Cend%7Bmatrix%7D%5Cright.%20

%5Csqrt%7Ba%2B%5Csqrt%7Bb%7D%20%7D%20%5Csqrt%7Ba-%5Csqrt%7Bb%7D%20%7D%20视为未知数解二元一次方程组

联立①②解得:

%5Cleft%5C%7B%5Cbegin%7Bmatrix%7D%20%0A%20%5Csqrt%7Ba%2B%5Csqrt%7Bb%7D%20%7D%20%0A%3D%5Csqrt%7B%5Cfrac%7Ba%2B%5Csqrt%7Ba%5E2-b%7D%20%7D%7B2%7D%20%7D%20%2B%5Csqrt%7B%5Cfrac%7Ba-%5Csqrt%7Ba%5E2-b%7D%20%7D%7B2%7D%20%7D%20%5C%5C%0A%5Csqrt%7Ba-%5Csqrt%7Bb%7D%20%7D%20%0A%3D%5Csqrt%7B%5Cfrac%7Ba%2B%5Csqrt%7Ba%5E2-b%7D%20%7D%7B2%7D%20%7D%20-%5Csqrt%7B%5Cfrac%7Ba-%5Csqrt%7Ba%5E2-b%7D%20%7D%7B2%7D%20%7D%20%0A%5Cend%7Bmatrix%7D%5Cright.%20


ps:如上思想为构造对偶式%5Csqrt%7Ba%2B%5Csqrt%7Bb%7D%20%7D%20%5Csqrt%7Ba-%5Csqrt%7Bb%7D%20%7D%20

此类题型可化为上述形式,并具备以下特征:

a%2Cb%5Cin%20Z%5E%2Ba%5E2-b为整数的完全平方数

诸如:%5Csqrt%7B8-2%5Csqrt%7B15%7D%20%7D%20%2C%5Csqrt%7B2%2B%5Csqrt%7B3%7D%20%7D%20%2C%5Csqrt%7B3-%5Csqrt%7B5%7D%20%7D%20


双重根式化简代数小结论及证明的评论 (共 条)

分享到微博请遵守国家法律