欢迎光临散文网 会员登陆 & 注册

量子场论(九):洛伦兹代数和庞加莱代数

2022-11-29 22:44 作者:我的世界-华汁  | 我要投稿

来研究(8.19)式。考虑无穷小庞加莱变换,左边化为:

%5Cbegin%7Balign%7D%5Chat%20U%5E%7B-1%7D(%5Cmathbf%201%2B%5Comega%2C%5Cvarepsilon)%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5Chat%20U(%5Cmathbf%201%2B%5Comega%2C%5Cvarepsilon)%26%3D(1%2B%5Cfrac%20i2%5Comega_%7B%5Cgamma%5Cdelta%7D%5Chat%20J%5E%7B%5Cgamma%5Cdelta%7D%2Bi%5Cvarepsilon_%5Cgamma%5Chat%20P%5E%5Cgamma)%5Chat%20J%5E%7B%5Cmu%5Cnu%7D(1-%5Cfrac%20i2%5Comega_%7B%5Calpha%20%5Cbeta%20%7D%5Chat%20J%5E%7B%5Calpha%20%5Cbeta%20%7D-i%5Cvarepsilon_%5Calpha%20%5Chat%20P%5E%5Calpha%20)%5C%5C%26%3D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D-%5Cfrac%20i2%5Comega_%7B%5Calpha%20%5Cbeta%20%7D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5Chat%20J%5E%7B%5Calpha%20%5Cbeta%20%7D%2B%5Cfrac%20i2%5Comega_%7B%5Cgamma%5Cdelta%7D%5Chat%20J%5E%7B%5Cgamma%5Cdelta%7D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D-i%5Cvarepsilon_%5Calpha%20%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5Chat%20P%5E%5Calpha%2Bi%5Cvarepsilon_%5Cgamma%5Chat%20P%5E%5Cgamma%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5C%5C%26%3D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D-%5Cfrac12%5Comega_%7B%5Crho%5Csigma%7D%5B%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%2C%5Chat%20J%5E%7B%5Crho%5Csigma%7D%5D-i%5Cvarepsilon_%5Crho%5B%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%2C%5Chat%20P%5E%5Crho%5D.%5Cend%7Balign%7D%5Ctag%7B9.1%7D

(8.19)右边第一项变成:

%5Cbegin%7Balign%7D%7B(%5Cmathbf%201%2B%5Comega)%5E%5Cmu%7D_%5Crho%7B(%5Cmathbf%201%2B%5Comega)%5E%5Cnu%7D_%5Csigma%5Chat%20J%5E%7B%5Crho%5Csigma%7D%26%3D(%7B%5Cdelta%5E%5Cmu%7D_%5Crho%2B%7B%5Comega%5E%5Cmu%7D_%5Crho)(%7B%5Cdelta%5E%5Cnu%7D_%5Csigma%2B%7B%5Comega%5E%5Cnu%7D_%5Csigma)%5Chat%20J%5E%7B%5Crho%5Csigma%7D%3D%7B%5Cdelta%5E%5Cmu%7D_%5Crho%7B%5Cdelta%5E%5Cnu%7D_%5Csigma%5Chat%20J%5E%7B%5Crho%5Csigma%7D%2B%7B%5Cdelta%5E%5Cmu%7D_%5Crho%7B%5Comega%5E%5Cnu%7D_%5Csigma%5Chat%20J%5E%7B%5Crho%5Csigma%7D%2B%7B%5Comega%5E%5Cmu%7D_%5Crho%7B%5Cdelta%5E%5Cnu%7D_%5Csigma%5Chat%20J%5E%7B%5Crho%5Csigma%7D%5C%5C%26%3D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%2B%7B%5Comega%5E%5Cnu%7D_%5Csigma%5Chat%20J%5E%7B%5Cmu%5Csigma%7D%2B%7B%5Comega%5E%5Cmu%7D_%5Crho%5Chat%20J%5E%7B%5Crho%5Cnu%7D%3D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%2B%5Comega_%7B%5Crho%5Csigma%7Dg%5E%7B%5Cnu%5Crho%7D%5Chat%20J%5E%7B%5Cmu%5Csigma%7D%2B%5Comega_%7B%5Csigma%5Crho%7Dg%5E%7B%5Cmu%5Csigma%7D%5Chat%20J%5E%7B%5Crho%5Cnu%7D%5C%5C%26%3D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%2B%5Comega_%7B%5Crho%5Csigma%7D(g%5E%7B%5Cnu%5Crho%7D%5Chat%20J%5E%7B%5Cmu%5Csigma%7D%2Bg%5E%7B%5Cmu%5Csigma%7D%5Chat%20J%5E%7B%5Cnu%5Crho%7D)%5C%5C%26%3D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%2B%5Cfrac12%5Comega_%7B%5Crho%5Csigma%7D(g%5E%7B%5Cnu%5Crho%7D%5Chat%20J%5E%7B%5Cmu%5Csigma%7D%2Bg%5E%7B%5Cmu%5Csigma%7D%5Chat%20J%5E%7B%5Cnu%5Crho%7D)%2B%5Cfrac12%5Comega_%7B%5Csigma%5Crho%7D(g%5E%7B%5Cnu%5Csigma%7D%5Chat%20J%5E%7B%5Cmu%5Crho%7D%2Bg%5E%7B%5Cmu%5Crho%7D%5Chat%20J%5E%7B%5Cnu%5Csigma%7D)%5C%5C%26%3D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%2B%5Cfrac12%5Comega_%7B%5Crho%5Csigma%7D(g%5E%7B%5Cnu%5Crho%7D%5Chat%20J%5E%7B%5Cmu%5Csigma%7D-g%5E%7B%5Cnu%5Csigma%7D%5Chat%20J%5E%7B%5Cmu%5Crho%7D%2Bg%5E%7B%5Cmu%5Csigma%7D%5Chat%20J%5E%7B%5Cnu%5Crho%7D-g%5E%7B%5Cmu%5Crho%7D%5Chat%20J%5E%7B%5Cnu%5Csigma%7D).%5Cend%7Balign%7D%5Ctag%7B9.2%7D

(8.19)右边第二、三项变成:

%5Cbegin%7Balign%7D%7B(%5Cmathbf%201%2B%5Comega)%5E%5Cmu%7D_%5Crho%5Cvarepsilon%5E%5Cnu%5Chat%20P%5E%5Crho-%7B(%5Cmathbf%201%2B%5Comega)%5E%5Cnu%7D_%5Crho%5Cvarepsilon%5E%5Cmu%5Chat%20P%5E%5Crho%26%3D(%7B%5Cdelta%5E%5Cmu%7D_%5Crho%2B%7B%5Comega%5E%5Cmu%7D_%5Crho)%5Cvarepsilon%5E%5Cnu%5Chat%20P%5E%5Crho-(%7B%5Cdelta%5E%5Cnu%7D_%5Crho%2B%7B%5Comega%5E%5Cnu%7D_%5Crho)%5Cvarepsilon%5E%5Cmu%5Chat%20P%5E%5Crho%5C%5C%26%3D%5Cvarepsilon%5E%5Cnu%5Chat%20P%5E%5Cmu-%5Cvarepsilon%5E%5Cmu%5Chat%20P%5E%5Cnu%3D%5Cvarepsilon_%5Crho(g%5E%7B%5Cnu%5Crho%7D%5Chat%20P%5E%5Cmu-g%5E%7B%5Cmu%5Crho%7D%5Chat%20P%5E%5Cnu).%5Cend%7Balign%7D%5Ctag%7B9.3%7D

对比发现生成元算符间的对易关系:

%5B%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%2C%5Chat%20J%5E%7B%5Crho%5Csigma%7D%5D%3Di(g%5E%7B%5Cnu%5Crho%7D%5Chat%20J%5E%7B%5Cmu%5Csigma%7D-g%5E%7B%5Cmu%5Crho%7D%5Chat%20J%5E%7B%5Cnu%5Csigma%7D-g%5E%7B%5Cnu%5Csigma%7D%5Chat%20J%5E%7B%5Cnu%5Crho%7D%2Bg%5E%7B%5Cmu%5Csigma%7D%5Chat%20J%5E%7B%5Cmu%5Crho%7D).%5Ctag%7B9.4%7D

%5B%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%2C%5Chat%20P%5E%7B%5Crho%7D%5D%3Di(g%5E%7B%5Cnu%5Crho%7D%5Chat%20P%5E%5Cmu-g%5E%7B%5Cmu%5Crho%7D%5Chat%20P%5E%5Cnu).%5Ctag%7B9.5%7D

以生成元%5Chat%20J%5E%7B%5Cmu%5Cnu%7D的6个分量作为基底张成线性空间,以对易关系(9.4)定义乘法,则两个矢量的乘积还是这个空间中的矢量,即乘法运算封闭,则称此线性空间为洛伦兹代数

n维李群的群空间由n个连续实参数x%5E%5Calpha(%5Calpha%3D1%2C%E2%80%A6%2Cn)描述,可以看做n维微分流形,O(N)和SO(N)是%5Cfrac%7BN(N-1)%7D%7B2%7D维李群,U(N)是N%5E2维李群,SU(N)是N%5E2-1维李群,对于n维李群的一个m维线性表示,在恒元附近,无穷小变换对应的表示矩阵可以展开为:

%5Cmathbf%201%2Bix%5E%5Calpha%20a%5E%5Calpha%2B%5Cmathcal%20O(x%5E%5Calpha%20x%5E%5Cbeta).%5Ctag%7B9.6%7D

其中a%5E%5Calphan个独立的m阶生成元矩阵,生成元满足对易关系:

%5Ba%5E%5Calpha%2Ca%5E%5Cbeta%5D%3Dif%5E%7B%5Calpha%5Cbeta%5Cgamma%7Da%5E%5Cgamma.%5Ctag%7B9.7%7D

其中实数f%5E%7B%5Calpha%5Cbeta%5Cgamma%7D称为结构常数,满足f%5E%7B%5Calpha%5Cbeta%5Cgamma%7D%3D-f%5E%7B%5Cbeta%5Calpha%5Cgamma%7D.不同的表示具有不同的生成元,不过,同一个李群的所有线性表示的结构常数都是一样的,描述了李群的局域性质。阿贝尔群的结构常数是零。生成元的对易子又叫李括号,是一种乘法运算。在生成元为基底张成的线性空间中,李括号运算是封闭的,构成代数,称为李代数。李代数刻画李群在恒元附近的局域结构。

洛伦兹群是一个六维李群,它的李代数就是洛伦兹代数。洛伦兹群任何线性表示的生成元都要满足洛伦兹代数关系(9.4)式。反过来,通过构造满足洛伦兹代数关系的生成元,,可以得到洛伦兹群的线性表示。

把生成元%5Chat%20J%5E%7B%5Cmu%5Cnu%7D的6个分量组合成两个三维矢量算符。空间部分组合为:

%5Chat%20J%5Ei%5Cequiv%5Cfrac12%5Cvarepsilon%5E%7Bijk%7D%5Chat%20J%5E%7Bjk%7D%2C%5Chat%7B%5Cmathbf%20J%7D%3D(%5Chat%20J%5E%7B23%7D%2C%5Chat%20J%5E%7B31%7D%2C%5Chat%20J%5E%7B12%7D).%5Ctag%7B9.8%7D

时空混合部分组合为:

%5Chat%20K%5Ei%5Cequiv%5Chat%20J%5E%7B0i%7D%2C%5Chat%7B%5Cmathbf%20K%7D%3D(%5Chat%20J%5E%7B01%7D%2C%5Chat%20J%5E%7B02%7D%2C%5Chat%20J%5E%7B03%7D).%5Ctag%7B9.9%7D

那么%5Chat%20J%5Ei%5Chat%20J%5Ej的对易关系为:

%5Cbegin%7Balign%7D%5B%5Chat%20J%5Ei%2C%5Chat%20J%5Ej%5D%26%3D%5Cfrac14%5Cvarepsilon%5E%7Bikl%7D%5Cvarepsilon%5E%7Bjmn%7D%5B%5Chat%20J%5E%7Bkl%7D%2C%5Chat%20J%5E%7Bmn%7D%5D%3D%5Cfrac%20i4%5Cvarepsilon%5E%7Bikl%7D%5Cvarepsilon%5E%7Bjmn%7D(g%5E%7Blm%7D%5Chat%20J%5E%7Bkn%7D-g%5E%7Bkm%7D%5Chat%20J%5E%7Bln%7D-g%5E%7Bln%7D%5Chat%20J%5E%7Bkm%7D%2Bg%5E%7Bkn%7D%5Chat%20J%5E%7Blm%7D)%5C%5C%26%3D%5Cfrac%20i2%5Cvarepsilon%5E%7Bikl%7D%5Cvarepsilon%5E%7Bjmn%7D(g%5E%7Blm%7D%5Chat%20J%5E%7Bkn%7D-g%5E%7Bkm%7D%5Chat%20J%5E%7Bln%7D)%3Di%5Cvarepsilon%5E%7Bikl%7D%5Cvarepsilon%5E%7Bjmn%7Dg%5E%7Blm%7D%5Chat%20J%5E%7Bkn%7D%3D-i%5Cvarepsilon%5E%7Bikl%7D%5Cvarepsilon%5E%7Bjln%7D%5Chat%20J%5E%7Bkn%7D%5C%5C%26%3Di%5Cvarepsilon%5E%7Bikl%7D%5Cvarepsilon%5E%7Bjnl%7D%5Chat%20J%5E%7Bkn%7D%3Di(%5Cdelta%5E%7Bij%7D%5Cdelta%5E%7Bkn%7D-%5Cdelta%5E%7Bin%7D%5Cdelta%5E%7Bkj%7D)%5Chat%20J%5E%7Bkn%7D%3D-i%5Chat%20J%5E%7Bji%7D%3Di%5Chat%20J%5E%7Bij%7D.%5Cend%7Balign%7D%5Ctag%7B9.10%7D

而我们容易知道:

%5Chat%20J%5E%7Bij%7D%3D%5Cvarepsilon%5E%7Bijk%7D%5Chat%20J%5Ek.%5Ctag%7B9.11%7D

因此对易关系为:

%5B%5Chat%20J%5Ei%2C%5Chat%20J%5Ej%5D%3Di%5Cvarepsilon%5E%7Bijk%7D%5Chat%20J%5Ek.%5Ctag%7B9.12%7D

又引入两个三维矢量:

%5Ctheta%5Ei%5Cequiv-%5Cfrac12%5Cvarepsilon%5E%7Bijk%7D%5Comega_%7Bjk%7D%2C%5Ctextbf%CE%B8%3D(-%5Comega_%7B23%7D%2C-%5Comega_%7B31%7D%2C-%5Comega_%7B12%7D).%5Ctag%7B9.13%7D

%5Cxi%5Ei%5Cequiv-%5Comega_%7B0i%7D%2C%5Cmathbf%20%CE%BE%3D(-%5Comega_%7B01%7D%2C-%5Comega_%7B02%7D%2C-%5Comega_%7B03%7D).%5Ctag%7B9.14%7D

%5Ctheta%5E3是做洛伦兹变换时绕z轴转过的角度,%5Cxi%5E1是沿x轴的快度。从而,无穷小洛伦兹变换化为:

%5Cbegin%7Balign%7D%5Chat%20U(%5Cmathbf1%2B%5Comega)%26%3D1-%5Cfrac%20i2%5Comega_%7B%5Cmu%5Cnu%7D%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5C%5C%26%3D1-i%5Comega_%7B23%7D%5Chat%20J%5E%7B23%7D-i%5Comega_%7B31%7D%5Chat%20J%5E%7B31%7D-i%5Comega_%7B12%7D%5Chat%20J%5E%7B12%7D-i%5Comega_%7B01%7D%5Chat%20J%5E%7B01%7D-i%5Comega_%7B02%7D%5Chat%20J%5E%7B02%7D-i%5Comega_%7B03%7D%5Chat%20J%5E%7B03%7D%5C%5C%26%3D1%2Bi%5Cmathbf%CE%B8%5Ccdot%5Chat%7B%5Cmathbf%20J%7D%2Bi%5Cmathbf%CE%BE%5Ccdot%5Chat%7B%5Cmathbf%20K%7D.%5Cend%7Balign%7D%5Ctag%7B9.15%7D

对于绕%5Chat%7B%5Cmathbf%20J%7D轴的空间旋转变换R_z(%5Ctheta%5E3)%2C%5Ctheta%5E1%3D%5Ctheta%5E2%3D%5Cxi%5Ei%3D0%2C因此有:

%5Cfrac%7B%5Cmathrm%20d%5Chat%20U%5BR_z(%5Ctheta%5E3)%5D%7D%7B%5Cmathrm%20d%5Ctheta%5E3%7D%5Cbigg%7C_%7B%5Ctheta%5E3%3D0%7D%3Di%5Chat%20J%5E3.%5Ctag%7B9.16%7D

由初始条件%5Chat%20U%5BR_z(0)%5D%3D1得到相应的量子旋转变换:

%5Chat%20U%5BR_z(%5Ctheta%5E3)%5D%3De%5E%7Bi%5Ctheta%5E3%5Chat%20J%5E3%7D.%5Ctag%7B9.17%7D

空间旋转对称性对应着角动量守恒定律,因此,%5Chat%20J%5E3就是角动量算符在z轴上的分量。同理,%5Chat%7B%5Cmathbf%20J%7D就是总角动量算符。空间旋转群SO(3)是洛伦兹群空间部分的子群,总角动量算符%5Chat%7B%5Cmathbf%20J%7D是量子空间旋转变换的生成元。而(9.12)式就是SO(3)的李代数关系,结构常数就是%5Cvarepsilon%5E%7Bijk%7D

SO(3)和三维李群SU(2)联系密切,在SU(2)的基础表示中,三个生成元矩阵为:

%5Ctau%5Ei%5Cequiv%5Cfrac%7B%5Csigma%5Ei%7D2.%5Ctag%7B9.18%7D

其中%5Csigma%5Ei是3个2×2的泡利矩阵:

%5Csigma%5E1%3D%5Cbegin%7Bbmatrix%7D0%261%5C%5C1%260%5Cend%7Bbmatrix%7D%2C%5Csigma%5E2%3D%5Cbegin%7Bbmatrix%7D0%26-i%5C%5Ci%260%5Cend%7Bbmatrix%7D%2C%5Csigma%5E3%3D%5Cbegin%7Bbmatrix%7D1%260%5C%5C0%26-1%5Cend%7Bbmatrix%7D.%5Ctag%7B9.19%7D

它们很神奇,既厄米又幺正:

(%5Csigma%5Ei)%5E%7B-1%7D%3D(%5Csigma%5Ei)%5E%5Cdagger%3D%5Csigma%5Ei.%5Ctag%7B9.20%7D

泡利矩阵们的乘积们:

%7B(%5Csigma%5E1)%5E2%3D(%5Csigma%5E2)%5E2%3D(%5Csigma%5E3)%5E2%3D%5Cmathbf1%2C%5C%5C%5Csigma%5E1%5Csigma%5E2%3Di%5Csigma%5E3%2C%5Csigma%5E2%5Csigma%5E3%3Di%5Csigma%5E1%2C%5Csigma%5E3%5Csigma%5E1%3Di%5Csigma%5E2%2C%5C%5C%5Csigma%5E2%5Csigma%5E1%3D-i%5Csigma%5E3%2C%5Csigma%5E3%5Csigma%5E2%3D-i%5Csigma%5E1%2C%5Csigma%5E1%5Csigma%5E3%3D-i%5Csigma%5E2.%7D%5Ctag%7B9.21%7D

总结起来:

%5Csigma%5Ei%5Csigma%5Ej%3D%5Cdelta%5E%7Bij%7D%2Bi%5Cvarepsilon%5E%7Bijk%7D%5Csigma%5Ek.%5Ctag%7B9.22%7D

可以得到泡利矩阵的对易子和反对易子:

%5B%5Csigma%5Ei%2C%5Csigma%5Ej%5D%3D2i%5Cvarepsilon%5E%7Bijk%7D%5Csigma%5Ek.%5Ctag%7B9.23%7D

%5B%5Csigma%5Ei%2C%5Csigma%5Ej%5D_%2B%3D2%5Cdelta%5E%7Bij%7D.%5Ctag%7B9.24%7D

因此,SU(2)生成元的对易关系为:

%5B%5Ctau%5Ei%2C%5Ctau%5Ej%5D%3D%5Cfrac14%5B%7B%5Csigma%5Ei%2C%5Csigma%5Ej%7D%5D%3D%5Cfrac%20i2%5Cvarepsilon%5E%7Bijk%7D%5Csigma%5Ek%3Di%5Cvarepsilon%5E%7Bijk%7D%5Ctau%5Ek.%5Ctag%7B9.25%7D

因此发现,SO(3)和SU(2)的李代数关系完全一致,说明两个李群在恒元附近的局域性质相同。

但是,SU(2)群的整体拓扑性质与 SO(3)群不一样。SU(2) 和SO(3)的群空间都是连通的,更仔细地讲,SU(2) 的群空间是单连通的,连接群空间中两点的任意两条曲线可以连续地形变成彼此,等价地,群空间内任意一条闭合曲线可以连续地收缩为一点。SO(3)的群空间是双连通的,即连通度为 2,连接群空间中两点的曲线分成两类,同一类曲线能够连续地变化成彼此,不同类曲线则不能;相应地,闭合曲线也分为两类,有一类能连续收缩成一点,另一类不能。

SO(3) 群空间中的两类闭合曲线,小空心圆代表两个对径点。左图中的闭合曲线可以连
续收缩成一点。右图中的闭合曲线在对径点处发生跳跃,不能连续收缩成一点。

另一方面,%5Chat%7B%5Cmathbf%20K%7D是增速算符。%5Chat%7B%5Cmathbf%20J%7D%5Chat%7B%5Cmathbf%20K%7D的对易关系为:

%5Cbegin%7Balign%7D%5B%5Chat%20J%5Ei%2C%5Chat%20K%5Ej%5D%26%3D%5Cfrac12%5Cvarepsilon%5E%7Bikl%7D%5B%5Chat%20J%5E%7Bkl%7D%2C%5Chat%20J%5E%7B0j%7D%5D%3D%5Cfrac12%5Cvarepsilon%5E%7Bikl%7D(g%5E%7Bl0%7D%5Chat%20J%5E%7Bkj%7D-g%5E%7Bk0%7D%5Chat%20J%5E%7Blj%7D-g%5E%7Blj%7D%5Chat%20J%5E%7Bk0%7D%2Bg%5E%7Bkj%7D%5Chat%20J%5E%7Bl0%7D)%5C%5C%26%3Di%5Cvarepsilon%5E%7Bikl%7D(g%5E%7Bl0%7D%5Chat%20J%5E%7Bkj%7D-g%5E%7Blj%7D%5Chat%20J%5E%7Bk0%7D)%3D-i%5Cvarepsilon%5E%7Bikl%7Dg%5E%7Blj%7D%5Chat%20J%5E%7Bk0%7D%5C%5C%26%3Di%5Cvarepsilon%5E%7Bikj%7D%5Chat%20J%5E%7Bk0%7D%3Di%5Cvarepsilon%5E%7Bijk%7D%5Chat%20J%5E%7B0k%7D%3Di%5Cvarepsilon%5E%7Bijk%7D%5Chat%20K%5E%7Bk%7D.%5Cend%7Balign%7D%5Ctag%7B9.26%7D

%5Chat%7B%5Cmathbf%20K%7D自身的对易关系为:

%5Cbegin%7Balign%7D%5B%5Chat%20K%5Ei%2C%5Chat%20K%5Ej%5D%26%3D%5B%5Chat%20J%5E%7B0i%7D%2C%5Chat%20J%5E%7B0j%7D%5D%3Di(g%5E%7Bi0%7D%5Chat%20J%5E%7B0j%7D-g%5E%7B00%7D%5Chat%20J%5E%7Bij%7D-g%5E%7Bij%7D%5Chat%20J%5E%7B00%7D%2Bg%5E%7B0j%7D%5Chat%20J%5E%7Bi0%7D)%5C%5C%26%3D-i(g%5E%7B00%7D%5Chat%20J%5E%7Bij%7D%2Bg%5E%7Bij%7D%5Chat%20J%5E%7B00%7D)%3D-i%5Chat%20J%5E%7Bij%7D%3D-i%5Cvarepsilon%5E%7Bijk%7D%5Chat%20J%5E%7Bk%7D.%5Cend%7Balign%7D%5Ctag%7B9.27%7D

归纳起来,有:

%5B%5Chat%20J%5Ei%2C%5Chat%20J%5Ej%5D%3Di%5Cvarepsilon%5E%7Bijk%7D%5Chat%20J%5Ek%2C%5B%5Chat%20J%5Ei%2C%5Chat%20K%5Ej%5D%3Di%5Cvarepsilon%5E%7Bijk%7D%5Chat%20K%5Ek%2C%5B%5Chat%20K%5Ei%2C%5Chat%20K%5Ej%5D%3D-i%5Cvarepsilon%5E%7Bijk%7D%5Chat%20J%5Ek.%5Ctag%7B9.28%7D

这是洛伦兹代数关系的另一种表述。可见,三个生成元%5Chat%20J%5Ei自己就可以构成封闭的代数,而三个生成元%5Chat%20K%5Ei则不能。

来研究(8.20)式。考虑无穷小庞加莱变换,左边化为:

%5Cbegin%7Balign%7D%5Chat%20U%5E%7B-1%7D(%5Cmathbf%201%2B%5Comega%2C%5Cvarepsilon)%5Chat%20P%5E%5Cmu%5Chat%20U(%5Cmathbf%201%2B%5Comega%2C%5Cvarepsilon)%26%3D(1%2B%5Cfrac%20i2%5Comega_%7B%5Cgamma%5Cdelta%7D%5Chat%20J%5E%7B%5Cgamma%5Cdelta%7D%2Bi%5Cvarepsilon_%5Cgamma%5Chat%20P%5E%5Cgamma)%5Chat%20P%5E%5Cmu(1-%5Cfrac%20i2%5Comega_%7B%5Calpha%20%5Cbeta%20%7D%5Chat%20J%5E%7B%5Calpha%20%5Cbeta%20%7D-i%5Cvarepsilon_%5Calpha%20%5Chat%20P%5E%5Calpha%20)%5C%5C%26%3D%5Chat%20P%5E%5Cmu-%5Cfrac%20i2%5Comega_%7B%5Calpha%20%5Cbeta%20%7D%5Chat%20P%5E%5Cmu%5Chat%20J%5E%7B%5Calpha%20%5Cbeta%20%7D%2B%5Cfrac%20i2%5Comega_%7B%5Cgamma%5Cdelta%7D%5Chat%20J%5E%7B%5Cgamma%5Cdelta%7D%5Chat%20P%5E%5Cmu-i%5Cvarepsilon_%5Calpha%5Chat%20P%5E%5Cmu%20%5Chat%20P%5E%5Calpha%2Bi%5Cvarepsilon_%5Cgamma%5Chat%20P%5E%5Cgamma%5Chat%20P%5E%5Cmu%5C%5C%26%3D%5Chat%20P%5E%5Cmu-%5Cfrac%20i2%5Comega_%7B%5Crho%5Csigma%7D%5B%5Chat%20P%5E%5Cmu%2C%5Chat%20J%5E%7B%5Crho%5Csigma%7D%5D-i%5Cvarepsilon_%5Cnu%5B%5Chat%20P%5E%5Cmu%2C%5Chat%20P%5E%5Cnu%5D.%5Cend%7Balign%7D%5Ctag%7B9.29%7D

(8.20)式右边给出:

%5Cbegin%7Balign%7D%7B(%5Cmathbf%201%2B%5Comega%2C%5Cvarepsilon%20)%5E%5Cmu%7D_%5Cnu%5Chat%20P%5E%5Cnu%26%3D%5Chat%20P%5E%5Cmu%2B%7B%5Comega%5E%5Cmu%7D_%5Cnu%5Chat%20P%5E%5Cnu%3D%5Chat%20P%5E%5Cmu%2B%5Comega_%7B%5Crho%5Csigma%7Dg%5E%7B%5Cmu%5Crho%7D%5Chat%20P%5E%5Csigma%3D%5Chat%20P%5E%5Cmu%2B%5Cfrac12(g%5E%7B%5Cmu%5Crho%7D%5Chat%20P%5E%5Csigma-g%5E%7B%5Cmu%5Csigma%7D%5Chat%20P%5E%5Crho).%5Cend%7Balign%7D%5Ctag%7B9.30%7D

得到对易关系如下:

%5B%5Chat%20P%5E%5Cmu%2C%5Chat%20J%5E%7B%5Crho%5Csigma%7D%5D%3Di(g%5E%7B%5Cmu%5Crho%7D%5Chat%20P%5E%5Csigma-g%5E%7B%5Cmu%5Csigma%7D%5Chat%20P%5E%5Crho).%5Ctag%7B9.31%7D

%5B%5Chat%20P%5E%5Cmu%2C%5Chat%20P%5E%5Cnu%5D%3D0.%5Ctag%7B9.32%7D

以生成元%5Chat%20J%5E%7B%5Cmu%5Cnu%7D%5Chat%20P%5E%5Cmu的10个独立分量作为基底张成的线性空间,用(9.4)(9.31)(9.32)定义乘法,就构成了庞加莱代数,这是十维庞加莱群的李代数。洛伦兹代数是庞加莱代数的子代数。

%5Chat%20H%5Cequiv%5Chat%20P%5E0%2C%5Chat%20P%5E%5Cmu%3D(%5Chat%20H%2C%5Chat%7B%5Cmathbf%20P%7D)%2C进一步推出:

%5B%5Chat%20P%5Ei%2C%5Chat%20J%5Ej%5D%3D%5Cfrac12%5Cvarepsilon%5E%7Bjkl%7D%5B%5Chat%20P%5Ei%2C%5Chat%20J%5E%7Bkl%7D%5D%3D%5Cfrac%20i2%5Cvarepsilon%5E%7Bjkl%7D(g%5E%7Bik%7D%5Chat%20P%5El-g%5E%7Bil%7D%5Chat%20P%5Ek)%3D%5Cfrac%20i2(%5Cvarepsilon%5E%7Bjil%7D%5Chat%20P%5El-%5Cvarepsilon%5E%7Bjki%7D%5Chat%20P%5Ek)%3D-i%5Cvarepsilon%5E%7Bijk%7D%5Chat%20P%5Ek.%5Ctag%7B9.33%7D

%5B%5Chat%20P%5Ei%2C%5Chat%20K%5Ej%5D%3D%5B%5Chat%20P%5Ei%2C%5Chat%20J%5E%7B0j%7D%5D%3Di(g%5E%7Bi0%7D%5Chat%20P%5Ej-g%5E%7Bij%7D%5Chat%20P%5E0)%3Di%5Cdelta%5E%7Bij%7D%5Chat%20H.%5Ctag%7B9.34%7D

%5B%5Chat%20H%2C%5Chat%20K%5Ei%5D%3D%5B%5Chat%20P%5E0%2C%5Chat%20J%5E%7B0i%7D%5D%3Di(g%5E%7B00%7D%5Chat%20P%5Ei-g%5E%7B0i%7D%5Chat%20P%5E0)%3Di%5Chat%20P%5Ei.%5Ctag%7B9.35%7D

%5B%5Chat%20H%2C%5Chat%20J%5Ei%5D%3D%5Cfrac12%5Cvarepsilon%5E%7Bijk%7D%5B%5Chat%20P%5E0%2C%5Chat%20J%5E%7Bjk%7D%5D%3D%5Cfrac%20i2%5Cvarepsilon%5E%7Bijk%7D(g%5E%7B0j%7D%5Chat%20P%5Ek-g%5E%7B0k%7D%5Chat%20P%5Ej)%3D0.%5Ctag%7B9.36%7D

整理一下,有:

%5B%5Chat%20P%5Ei%2C%5Chat%20J%5Ej%5D%3D-i%5Cvarepsilon%5E%7Bijk%7D%5Chat%20P%5Ek%2C%5B%5Chat%20P%5Ei%2C%5Chat%20K%5Ej%5D%3Di%5Cdelta%5E%7Bij%7D%5Chat%20H%2C%5B%5Chat%20H%2C%5Chat%20K%5Ei%5D%3Di%5Chat%20P%5Ei.%5Ctag%7B9.37%7D

%5B%5Chat%20H%2C%5Chat%20J%5Ei%5D%3D%5B%5Chat%20H%2C%5Chat%20P%5Ei%5D%3D%5B%5Chat%20P%5Ei%2C%5Chat%20P%5Ej%5D%3D0.%5Ctag%7B9.38%7D

(9.28)(9.37)(9.38)是庞加莱代数关系的另一种表述。

%5Comega_%7B%5Cmu%5Cnu%7D%3D0%2Ca%5E%5Cmu%3D(t_*%2C0)时,由(8.11)式得到:

%5Cfrac%7B%5Cmathrm%20d%5Chat%20U(%5Cmathbf%201%2Ca)%7D%7B%5Cmathrm%20dt_*%7D%5Cbigg%7C_%7Bt_*%3D0%7D%3D-i%5Chat%20H.%5Ctag%7B9.39%7D

%5Chat%20H不依赖于t_*%2C则由初始条件得知量子时间平移变换为:

%5Chat%20U(%5Cmathbf1%2Ca)%3De%5E%7B-i%5Chat%20Ht%7D.%5Ctag%7B9.40%7D

它将态矢从t时刻平移到t%5E%5Cprime%3Dt%2Bt_*时刻。时间平移对称性对应着能量守恒定律,因此%5Chat%20H就是哈密顿算符。

%5Comega_%7B%5Cmu%5Cnu%7D%3D0%2Ca%5E%5Cmu%3D(0%2C%5Cmathbf%20x_*)时,由(8.11)式得到:

%5Cfrac%7B%5Cmathrm%20d%5Chat%20U(%5Cmathbf%201%2Ca)%7D%7B%5Cmathrm%20dx%5Ei_*%7D%5Cbigg%7C_%7B%5Cmathbf%20x_*%3D0%7D%3Di%5Chat%20P%5Ei.%5Ctag%7B9.41%7D

则由初始条件得知量子空间平移变换为:

%5Chat%20U(%5Cmathbf1%2Ca)%3De%5E%7Bi%5Chat%7B%5Cmathbf%20P%7D%5Ccdot%5Cmathbf%20x_*%7D.%5Ctag%7B9.42%7D

它将态矢从%5Cmathbf%20x位置平移到%5Cmathbf%20x%5E%5Cprime%3D%5Cmathbf%20x%2B%5Cmathbf%20x_*位置。空间平移对称性对应着动量守恒定律,因此%5Chat%7B%5Cmathbf%20P%7D就是动量算符。因此,%5Chat%20P%5E%5Cmu%3D(%5Chat%20H%2C%5Chat%7B%5Cmathbf%20P%7D)是四维动量算符。在量子力学中,与哈密顿算符对易的量是守恒量,从而(9.38)式意味着总动量与总角动量守恒。

一般的量子时空平移变换可以表达为:

%5Chat%20U(%5Cmathbf%201%2Ca)%3De%5E%7B-i%5Chat%20P%5E%5Cmu%20a_%5Cmu%7D.%5Ctag%7B9.43%7D

满足:

%5Cfrac%7B%5Cmathrm%20d%5Chat%20U(%5Cmathbf%201%2Ca)%7D%7B%5Cmathrm%20da_%5Cmu%7D%5Cbigg%7C_%7Ba_%5Cmu%3D0%7D%3D-i%5Chat%20P%5E%5Cmu.%5Ctag%7B9.44%7D

量子场论(九):洛伦兹代数和庞加莱代数的评论 (共 条)

分享到微博请遵守国家法律