欢迎光临散文网 会员登陆 & 注册

复习笔记Day107:华中科技大学2023数学分析参考答案(下)

2023-02-23 23:57 作者:间宫_卓司  | 我要投稿

(续上)

7.设f%3A%5Cleft%5B%200%2C1%20%5Cright%5D%20%5Crightarrow%20%5Cleft(%200%2C%2B%5Cinfty%20%5Cright)%20为连续函数,常数a%5Cge1,证明

%5Cunderset%7Bn%5Crightarrow%20%5Cinfty%7D%7B%5Clim%7D%5Csqrt%5Bn%5D%7B%5Cint_0%5E1%7B%5Cleft(%20a%2Bx%5En%20%5Cright)%20%5Enf%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%7D%3Da%2B1

这个感觉就是把典中典的题目魔改了一下,一方面,设f%5Cleft(%20x%20%5Cright)%20%3CM%2CM%3E0,则

%5Cint_0%5E1%7B%5Cleft(%20a%2Bx%5En%20%5Cright)%20%5Enf%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%3CM%5Cleft(%20a%2B1%20%5Cright)%20%5En

另一方面,因为f(x)连续,所以可以设f(x)%3Em%3E0,那么

%5Cint_0%5E1%7B%5Cleft(%20a%2Bx%5En%20%5Cright)%20%5Enf%5Cleft(%20x%20%5Cright)%20%5Cmathrm%7Bd%7Dx%7D%3Em%5Cint_%7B1-%5Cfrac%7B2%7D%7Bn%5E2%7D%7D%5E%7B1-%5Cfrac%7B1%7D%7Bn%5E2%7D%7D%7B%5Cleft(%20a%2Bx%5En%20%5Cright)%20%5En%5Cmathrm%7Bd%7Dx%7D%3E%5Cfrac%7Bm%7D%7Bn%5E2%7D%5Cleft(%20a%2B%5Cleft(%201-%5Cfrac%7B2%7D%7Bn%5E2%7D%20%5Cright)%20%5En%20%5Cright)%20%5En

两边同时开n次方取极限可得结论

8.设f(x)(-%5Cinfty.%2B%5Cinfty)上可导,且对任意xf(x)%3Df(x%2B2k)%3Df(x%2Bb),其中k为正整数,b为无理数,用%5Ctext%7BFourier%7D级数理论证明f(x)为常数

听说是某年的竞赛题,不过我没有看答案,下面的方法对不对我也不清楚

f(x)的最小正周期为2T,若T%3D0,那么依65.1,结论已经成立了,现在设T%3E0,那么在%5B-T%2CT%5D

f%5Cleft(%20x%20%5Cright)%5Csim%20%20%5Cfrac%7Ba_0%7D%7B2%7D%2B%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20a_n%5Ccos%20%5Cfrac%7Bn%5Cpi%7D%7BT%7Dx%2Bb_n%5Csin%20%5Cfrac%7Bn%5Cpi%7D%7BT%7Dx%20%5Cright)%7D

又因为f(x)(-%5Cinfty.%2B%5Cinfty)上可导,所以f(x)满足李普希兹条件,故f(x)收敛于它的傅里叶级数,也就是

f%5Cleft(%20x%20%5Cright)%20%3D%5Cfrac%7Ba_0%7D%7B2%7D%2B%5Csum_%7Bn%3D1%7D%5E%7B%5Cinfty%7D%7B%5Cleft(%20a_n%5Ccos%20%5Cfrac%7Bn%5Cpi%7D%7BT%7Dx%2Bb_n%5Csin%20%5Cfrac%7Bn%5Cpi%7D%7BT%7Dx%20%5Cright)%7D%2C%5Cforall%20x%5Cin%20R

%5Cfrac%7B%5Cpi%7D%7BT%7D%3Dw,因为%5Ccos%20%5Cfrac%7Bn%5Cpi%7D%7BT%7Dx%2C%5Csin%20%5Cfrac%7Bn%5Cpi%7D%7BT%7Dx线性无关,所以

%5Ccos%20wx%3D%5Ccos%20%5Cleft(%20w%5Cleft(%20x%2B2k%20%5Cright)%20%5Cright)%20%3D%5Ccos%20%5Cleft(%20w%5Cleft(%20x%2Bb%20%5Cright)%20%5Cright)%20

这意味着%5Ccos%20wx既以2k为周期,又以b为周期,而%5Ccos%20wxT%3D%5Cfrac%7B2%5Cpi%7D%7Bw%7D为最小正周期,所以存在整数N%2CM,使得%5Cfrac%7B2%5Cpi%7D%7Bw%7D%3D2Nk%3DMb,那么%5Cfrac%7BN%7D%7BM%7D%3D%5Cfrac%7Bb%7D%7B2k%7D,但是左边是有理数,右边是无理数,矛盾

(这出现了伪证吗?而且其中求傅里叶级数完全是多余的)

9.设二元函数f(x%2Cy)(x_0%2Cy_0)的某邻域U内有定义,且在U内存在偏导数。证明:若

f_x%5Cleft(%20x%2Cy%20%5Cright)%20%2Cf_y%5Cleft(%20x%2Cy%20%5Cright)%20都在(x_0%2Cy_0)可微,则f_%7Bxy%7D%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%3Df_%7Byx%7D%5Cleft(%20x_0%2Cy_0%20%5Cright)%20

这道题的证明思路类似于课本上证明若f_%7Bxy%7Df_%7Byx%7D连续,则f_%7Bxy%7D%3Df_%7Byx%7D

依题意,有

%5Cbegin%7Baligned%7D%0A%09%26%5Cleft(%20f%5Cleft(%20x%2B%5CDelta%20x%2Cy%20%2B%5CDelta%20y%5Cright)%20-f%5Cleft(%20x%2B%5CDelta%20x%2Cy_0%20%5Cright)%20%5Cright)%20-%5Cleft(%20f%5Cleft(%20x_0%2Cy_0%2B%5CDelta%20y%20%5Cright)%20-f%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3D%5CDelta%20x%5Cleft(%20f_x%5Cleft(%20x_0%2B%5Ctheta%20%5CDelta%20x%2Cy_0%2B%5CDelta%20y%20%5Cright)%20-f_x%5Cleft(%20x_0%2B%5Ctheta%20%5CDelta%20x%2Cy_0%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3D%5CDelta%20x%5Cleft(%20f_x%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%2Bf_%7Bxx%7D%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%5Ctheta%20%5CDelta%20x%2Bf_%7Bxy%7D%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%5CDelta%20y%2B%20%5Cright.%5C%5C%0A%09%26%5Cleft.%20%2Bo%5Cleft(%20%5Csqrt%7B%5CDelta%20x%5E2%2B%5CDelta%20y%5E2%7D%20%5Cright)%20-f_x%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%2Bf_%7Bxx%7D%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%5Ctheta%20%5CDelta%20x%2Bo%5Cleft(%20%5CDelta%20x%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3D%5CDelta%20x%5CDelta%20yf_%7Bxy%7D%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%2Bo%5Cleft(%20%5Csqrt%7B%5CDelta%20x%5E2%2B%5CDelta%20y%5E2%7D%20%5Cright)%5C%5C%0A%5Cend%7Baligned%7D

同理%5Cbegin%7Baligned%7D%0A%09%26%5Cleft(%20f%5Cleft(%20x%2B%5CDelta%20x%2Cy%2B%5CDelta%20y%20%5Cright)%20-f%5Cleft(%20x%2Cy_0%2B%5CDelta%20y%20%5Cright)%20%5Cright)%20-%5Cleft(%20f%5Cleft(%20x_0%2B%5CDelta%20x%2Cy_0%20%5Cright)%20-f%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%5Cright)%5C%5C%0A%09%26%3D%5CDelta%20x%5CDelta%20yf_%7Byx%7D%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%2Bo%5Cleft(%20%5Csqrt%7B%5CDelta%20x%5E2%2B%5CDelta%20y%5E2%7D%20%5Cright)%5C%5C%0A%5Cend%7Baligned%7D

f_%7Bxy%7D%5Cleft(%20x_0%2Cy_0%20%5Cright)%20%3Df_%7Byx%7D%5Cleft(%20x_0%2Cy_0%20%5Cright)%20

很久没有给真题搞难度评估了

难度用技巧性//计算量来表示,其中绿色表示不需要技巧/计算量小,橙色表示需要一定的技巧/有一定的计算量,红色表示需要如果没做到过原题就很难想到的技巧/看到题目完全没有去计算的欲望。难度评估仅代表个人意见

附上去年的

难度肉眼可见的上升


这张考卷如果换现在我去做,估计第二题没做完就要撕考卷走人了,只能说幸好没报这学校吧

复习笔记Day107:华中科技大学2023数学分析参考答案(下)的评论 (共 条)

分享到微博请遵守国家法律