原子力显微镜在材料科学研究中的应用(三)
在做原子力显微镜AFM测试时,科学指南针检测平台工作人员在与很多同学沟通中了解到,好多同学对AFM测试不太了解,针对此,科学指南针检测平台团队组织相关同事对网上海量知识进行整理,希望可以帮助到科研圈的伙伴们;
AFM是利用样品表面与探针之间力的相互作用这一物理现象,因此不受STM等要求样品表面能够导电的限制,可对导体进行探测,对于不具有导电性的组织、生物材料和有机材料等绝缘体,AFM同样可得到高分辨率的表面形貌图像,从而使它更具有适应性,更具有广阔的应用空间。AFM可以在真空、超高真空、气体、溶液、电化学环境、常温和低温等环境下工作,可供研究时选择适当的环境,其基底可以是云母、硅、高取向热解石墨、玻璃等。AFM已被广泛地应用于表面分析的各个领域,通过对表面形貌的分析、归纳、总结,以获得更深层次的信息。
三维形貌观测
通过检测探针与样品间的作用力可表征样品表面的三维形貌,这是AFM最基本的功能。AFM在水平方向具有0.1-0.2nm的高分辨率,在垂直方向的分辨率约为0.01nm。尽管AFM和扫描电子显微镜(SEM)的横向分辨率是相似的,但AFM和SEM两种技术的最基本的区别在于处理试样深度变化时有不同的表征。由于表面的高低起伏状态能够准确地以数值的形式获取,AFM对表面整体图像进行分析可得到样品表面的粗糙度、颗粒度、平均梯度、孔结构和孔径分布等参数,也可对样品的形貌进行丰富的三维模拟显示,使图像更适合于人的直观视觉。图1就是接触式下得到的二氧化硅增透薄膜原子力图像,同时还可以逼真的看到其表面的三维形貌。

图1二氧化硅增透薄膜AFM图
在半导体加工过程中通常需要测量高纵比结构,像沟槽和孔洞,以确定刻蚀的深度和宽度。这些在SEM下只有将样品沿截面切开才能测量。AFM可以无损的进行测量后即返回生产线。图2为光栅的AFM图像,扫描范围为4×4μm。根据图2的结果,通过profile功能就可以定量测量刻槽的深度及宽度。
图2光栅的AFM图
以上就是科学指南针检测平台对网络上相关资料的整理如有测试需求,可以和科学指南针联系,我们会给与您最准确的数据和最好的服务体验,希望可以在大家的科研路上有所帮助。
免责声明:部分文章整合自网络,因内容庞杂无法联系到全部作者,如有侵权,请联系删除,我们会在第一时间予以答复,万分感谢。
关于AFM测试,今天就分享到这里。如果内容对你有帮助,希望大家不要吝啬点个赞哦,我们会继续给大家输出更多优质内容~
最后,祝大家科研顺利!如果你想和更多科研工作者学习探讨,可以扫码关注下哦~
