欢迎光临散文网 会员登陆 & 注册

【数学】有限展开(泰勒展开)

2022-05-10 03:44 作者:景丛  | 我要投稿

一.引言

    本质:使用多项式仿造较复杂的函数,以便于研究其性质。

        (多项式性质简单,只需要对自变量进行有限次的加、减、乘三种算术运算,就能求得其函数值)


        例子:在微分的应用中,当%7Cx%7C很小时,有如下的近似等式:

         e%5Ex%E2%89%881%2Bx                        ln(x%2B1)%E2%89%88x

         在 x%3D0 处这两个一次多项式及其一阶导数的值,分别等于被近似表达的函数及其倒数的相应值。

     x%3D0%3A%20e%5Ex%3D1%2Bx%3D1%20%3B%20ln(1%2Bx)%3Dx%3D0

     x%3D0%3A(e%5Ex)'%3D(1%2Bx)'%3D1%3B(ln(1%2Bx))'%3D%5Cfrac%7B1%7D%7B1%2Bx%7D%3Dx'%3D0%20

        用一阶多项式来近似表达了指数函数和对数函数,以便于简化对于后二者函数性质的研究。


二.公式来源

    核心思想:仿造一段曲线,要先保证起点相同,再保证在此处导数相同,继续保证在此处的导数的导数相同……


有一个解析式复杂的函数f(x), 用n次多项式g(x)来仿造f(x)


    ①在f(x)上任选一点切入进行模仿,为计算方便选择(0%2Cf(0))

        由于g(x)是可以求n阶导的n次多项式,则易得其解析式形式为:

        g(x)%3Da_%7B0%7D%20%2Ba_%7B1%7D%20x%2Ba_%7B2%7D%20x%5E2%2Ba_%7B3%7D%20x%5E3%2B...%2Ba_%7Bn%7D%20x%5En


    ②初始点相同

        g(0)%3Df(0)%3Da_%7B0%7D%20    求得a_0%3Df(0)


    ③n阶导数相同

        g%5En(0)%3Df%5En(0)%3Dn!a_n%20   求得 a_n%3D%5Cfrac%7Bf%5En(0)%7D%7Bn!%7D%20


    ④代入a_0%2Ca_1%2Ca_2...a_n的值到g(x)解析式,得起点为0的公式

        g(x)%3Df(0)%20%2B%5Cfrac%7Bf%5E1(0)%7D%7B1!%7D%20%20x%2B%5Cfrac%7Bf%5E2(0)%7D%7B2!%7D%20%20x%5E2%2B%5Cfrac%7Bf%5E3(0)%7D%7B3!%7D%20%20x%5E3%2B...%2B%5Cfrac%7Bf%5En(0)%7D%7Bn!%7D%20%20x%5En%20

        

以上推得的公式的起点选择为(0%2Cf(0))。如果任选某一起点(a%2Cf(a)),重新进行以上推导步骤,则可得模仿函数的一般公式(任意起点x=a)


g(x)%3Df(a)%20%2B%5Cfrac%7Bf%5E1(a)%7D%7B1!%7D%20%20(x-a)%2B%5Cfrac%7Bf%5E2(a)%7D%7B2!%7D%20%20(x-a)%5E2%2B%5Cfrac%7Bf%5E3(a)%7D%7B3!%7D%20%20(x-a)%5E3%2B...%2B%5Cfrac%7Bf%5En(a)%7D%7Bn!%7D%20%20(x-a)%5En


(相当于把自变量从(x-0)换成了(x-a))

当n趋近于正无穷时,等号才成立。


这个公式被称为泰勒公式。作用:已知某复杂函数f(x)的某点的值(a%2Cf(a))以及其n阶导数值f%5En(a),用多项式g(x)来仿造该函数该点在内的某一段,以研究这个点附近的f(x)函数性质。


三.常用泰勒展开式推导(起点为x=0,即a取0;n趋近于正无穷)


    ①f(x)%3De%5Ex

        计算易得:f%5E1(0)%3Df%5E2(0)%3Df%5E3(0)%3D...%3Df%5En(0)%3D1

        代入进模仿函数的起点为0的公式,得:

        g(x)%3D1%2B%5Cfrac%7Bx%7D%7B1!%7D%20%2B%5Cfrac%7Bx%5E2%7D%7B2!%7D%20%2B%5Cfrac%7Bx%5E3%7D%7B3!%7D%20%2B...%2B%5Cfrac%7Bx%5En%7D%7Bn!%7D%20

    

    (不常用的:f(x)%3Da%5Ex

        由 a%5Ex%3De%5E%7Bxlna%7D, 把①式里的x换成xlna即可得:

        g(x)%3D1%2Bxlna%2B%5Cfrac%7B(xlna)%5E2%7D%7B2!%7D%20%2B%5Cfrac%7B(xlna)%5E3%7D%7B3!%7D%20%2B...%2B%5Cfrac%7B(xlna)%5En%7D%7Bn!%7D%20



    ②f(x)%3Dsinx

        由:f%5E1(x)%3Dcosx%2Cf%5E2(x)%3D-sinx%2Cf%5E3(x)%3D-cosx%2Cf%5E4(x)%3Dsinx%2C...%0A

        推得通项为:f%5En(x)%3Dsin(x%2B%5Cfrac%7Bn%5Cpi%20%7D%7B2%7D%20)

        计算易得:f(0)%3D0%2Cf%5E1(0)%3D1%2Cf%5E2(0)%3D0%2Cf%5E3(0)%3D-1%2Cf%5E4(0)%3D0 它们顺序循环地取四个数:0,1,0,-1 。观察可得:偶数项系数为0。令n=2m。

        g(x)%3Dx-%5Cfrac%7Bx%5E3%7D%7B3!%7D%20%2B%5Cfrac%7Bx%5E5%7D%7B5!%7D%20-%5Cfrac%7Bx%5E7%7D%7B7!%7D%20%2B...%2B%5Cfrac%7B(-1)%5Emx%5E%7B2m%2B1%7D%7D%7B(2m%2B1)!%7D%20  (2m+1也可写为2m-1)



    ③f(x)%3Dcosx (同上原理)

        由:f%5E1(x)%3D-sinx%2Cf%5E2(x)%3D-cosx%2Cf%5E3(x)%3Dsinx%2Cf%5E4(x)%3Dcosx%2C...%0A

        推得通项为:f%5En(x)%3Dcos(x%2B%5Cfrac%7Bn%5Cpi%20%7D%7B2%7D%20)

        计算易得:f(0)%3D1%2Cf%5E1(0)%3D0%2Cf%5E2(0)%3D-1%2Cf%5E3(0)%3D0%2Cf%5E4(0)%3D1 它们顺序循环地取四个数:1,0,-1,0。观察可得:奇数项系数为0。令n=2m。

        g(x)%3D1-%5Cfrac%7Bx%5E2%7D%7B2!%7D%20%2B%5Cfrac%7Bx%5E4%7D%7B4!%7D%20-%5Cfrac%7Bx%5E6%7D%7B6!%7D%20%2B...%2B%5Cfrac%7B(-1)%5Enx%5E%7B2m%7D%7D%7B(2m)!%7D%20

    (还有个更简单的方法:cosx=sin’x,③可以通过②求导得到。)



    ④f(x)%3D(1%2Bx)%5E%5Calpha%20

        计算得:

        f%5E1(x)%3D%5Calpha%20(1%2Bx)%5E%7B%5Calpha-1%7D%2Cf%5E2(x)%3D%5Calpha(%5Calpha-1)%20(1%2Bx)%5E%7B%5Calpha-2%7D

        f%5E3(x)%3D%5Calpha(%5Calpha-1)%20(%5Calpha-2)(1%2Bx)%5E%7B%5Calpha-3%7D 

        ...

        f%5En(x)%3D%5Calpha(%5Calpha-1)%20(%5Calpha-2)(%5Calpha-3)...(%5Calpha-n%2B1)(1%2Bx)%5E%7B%5Calpha-n%7D

        代入进模仿函数的起点为0的公式,得:     g(x)%3D1%2B%5Calpha%20x%2B%5Cfrac%7B%5Calpha(%5Calpha%20-1)%20%7D%7B2!%7D%20x%5E2%2B%5Cfrac%7B%5Calpha(%5Calpha%20-1)%20(%5Calpha%20-2)%7D%7B3!%7D%20x%5E3%2B...%2B%5Cfrac%7B%5Calpha(%5Calpha%20-1)...%20(%5Calpha%20-n%2B1)%7D%7Bn!%7D%20x%5En



    ⑤f(x)%3D%5Cfrac%7B1%7D%7Bx%2B1%7D%20

       将α= -1代入④式,得: g(x)%3D1-x%2Bx%5E2-x%5E3%2B...%2B(-1)%5Enx%5En



    ⑥f(x)%3D%5Cfrac%7B1%7D%7Bx-1%7D%20

        将⑤中x替换为-x,得:g(x)%3D1%2Bx%2Bx%5E2%2Bx%5E3%2B...%2Bx%5En

        (也可以通过等比数列求和公式得到)



    ⑦f(x)%3Dln(1%2Bx)

        对⑤进行积分,得:g(x)%3Dx-%5Cfrac%7Bx%5E2%7D%7B2%7D%20%2B%5Cfrac%7Bx%5E3%7D%7B3%7D%20-...%2B(-1)%5E%7Bn-1%7D%5Cfrac%7Bx%5En%7D%7Bn%7D%20



    ⑧f(x)%3Dln(1-x)

        将⑦中x替换为-x,得:g(x)%3D-x-%5Cfrac%7Bx%5E2%7D%7B2%7D%20-%5Cfrac%7Bx%5E3%7D%7B3%7D%20-...-%5Cfrac%7Bx%5En%7D%7Bn%7D%20



进一步延伸:

    f(x)%3D%5Csqrt%7B1%2Bx%7D%20 或 f(x)%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B1%2Bx%7D%20%7D%20,它们的模仿函数可以分别让④式里的α取1/2或 -1/2 得到;

    f(x)%3DArctanx 可以通过f(x)%3D%5Cfrac%7B1%7D%7B1%2Bx%5E2%7D%20 的积分得到,而后者通过把⑤中x替换为x的平方得到;

    由 chx%3D%5Cfrac%7Be%5E%7B-x%7D%2Be%5Ex%7D%7B2%7D%20,代入①得其模仿函数,shx同理;

    ……



四.余项的处理

(目前来说用处不大,暂不细讲)

n不趋近于正无穷时,存在误差。设误差值为R_n(x),则有:

f(x)%20%3D%20g(x)%20%20%2B%20R_n(x)


余项,三种形式




参考资料:

https://www.zhihu.com/question/25627482/answer/313088784 知乎用户P17e01

《高等数学》 第七版 上册 同济大学数学系


【数学】有限展开(泰勒展开)的评论 (共 条)

分享到微博请遵守国家法律