欢迎光临散文网 会员登陆 & 注册

应用matlab编程中关于动态规划算法的总结

2023-02-17 09:16 作者:硬核的野生技术  | 我要投稿

应用matlab编程中关于动态规划算法的总结 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20 世纪 50 年代初 R. E. Bellman 等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。

动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时 

间无关的静态规划(如线性规划、非线性规划),只要人为的引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便的求解。需要注意的是,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。因而,它不像线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。

根据过程的时间变量是离散的还是连续的,分为离散时间决策过程(discrete-time decision process)和连续时间决策过程(continuous-time decision process);根据过程的演变是确定的还是随机的,分为确定性决策过程(deterministic decision process)和随机性决策过程(stochastic decision process),其中应用最广的是确定性多阶段决策过程。

动态规划与静态规划(线性和非线性规划等)研究的对象本质上都是在若干约束条件下的函数极值问题。两种规划在很多情况下原则上可以相互转换。

与静态规划相比,动态规划的优越性在于: 

1、能够得到全局最优解。由于约束条件确定的约束集合往往很复杂,即使指标函数较简单,用非线性规划方法也很难求出全局最优解。而动态规划方法把全过程化为一系列结构相似的子问题,每个子问题的变量个数大大减少,约束集合也简单得多,易于得到全局最优解。特别是对于约束集合、状态转移和指标函数不能用分析形式给出的优化问题,可以对每个子过程用枚举法求解,而约束条件越多,决策的搜索范围越小,求解也越容易。对于这类问题,动态规划通常是求全局最优解的唯一方法。 

2、可以得到一族最优解。与非线性规划只能得到全过程的一个最优解不同,动态规划得到的是全过程及所有后部子过程的各个状态的一族最优解。有些实际问题需要这样的解族,即使不需要,它们在分析最优策略和最优值对于状态的稳定性时也是很有用的。当最优策略由于某些原因不能实现时,这样的解族可以用来寻找次优策略。  3、能够利用经验提高求解效率。如果实际问题本身就是动态的,由于动态规划方法反映了过程逐段演变的前后联系和动态特征,在计算中可以利用实际知识和经验提高求解效率。如在策略迭代法中,实际经验能够帮助选择较好的初始策略,提高收敛速度。

动态规划的主要缺点是: 

没有统一的标准模型,也没有构造模型的通用方法,甚至还没有判断一个问题能否构造动态规划模型的准则。这样就只能对每类问题进行具体分析,构造具体的模型。对于较复杂的问题在选择状态、决策、确定状态转移规律等方面需要丰富的想象力和灵活的技巧性,这就带来了应用上的局限性。

资源分配问题 :一种或几种资源(包括资金)分配给若干用户,或投资于几家企业,以获得最大的效益。资源分配问题(resource allocating Problem)可以是多阶段决策过程,也可以是静态规划问题,都能构造动态规划模型求解。

   

1  

应用matlab编程中关于动态规划算法的总结的评论 (共 条)

分享到微博请遵守国家法律