精益业务数据分析(CDA一级认证教材)
链接:https://pan.baidu.com/s/14dpWoKsW6gouKYD1MJhsbA?pwd=8d54
提取码:8d54

编辑推荐
适读人群 :适合CDA LEVELⅠ应试人员、业务工作人员、数据分析从业人员、数据分析岗位求职人员学习
《精益业务数据分析》全面、系统地讲述业务描述性分析为企业决策行为创造价值的全流程技能,涵盖描述性数据分析方法、业务分析方法、数据分析结果应用方法等内容。
条理清晰的结构、通俗易懂的语言、完整立体的知识框架为读者铺开一幅精美的业务描述性分析知识画卷。建议读者先全篇通览整幅画卷,建立完整的数据分析知识体系,再精细阅览画卷中的每个细节,深入掌握每个具体知识点。适合CDA LEVELⅠ应试人员、业务工作人员、数据分析从业人员、数据分析岗位求职人员学习。
《商业策略数据分》适合CDA LEVELⅡ应试人员、 经常接触数据策略分析的业务人员,以及想要进一步了解数据策略分析思维与方法的读者。
内容简介
本书是企业业务数据分析方法的集大成著作,由知名数据分析研究机构CDA 数据科学研究院组织多名行业知名专家进行研讨、策划、编辑而成。书中内容源自对各行业领军企业实际业务数据分析技能需求的提炼及总结,这些企业包括但不限于京东、腾讯、IBM、中国移动、北京电信、苏宁集团、招商银行、中国邮政集团、GrowingIO 等。全书由八大部分构成:绪论、表格结构数据与表结构数据、数据库应用、描述性统计分析、多维数据透视分析、业务分析方法、业务分析报告与数据可视化报表、CDA 职业发展。
作者简介
CDA数据科学研究院简介
2013年,大数据行业方兴未艾,CDA数据科学研究院孕育而生,是国内率先成立的专注于数据科学领域的专业研究团队。
CDA数据科学研究院汇集数据行业专家,团队具有专业的学术素养、精湛的研究水平、扎实的企业实战经验,丰富的行业资源,通过对各类企业、社会组织等进行全面、系统、深入的调查和访问,从而获得紧跟技术发展的经验与数据,并结合数据行业的未来发展方向进行系统的研究,不断研发新的知识体系和技术应用。
近十年来,CDA数据科学研究院秉持“专业性、前沿性、科学性”的定位,深耕数据分析、大数据、人工智能等核心领域,持续推进数据科学的行业发展。未来,CDA数据科学研究院也将顺应数字化时代浪潮,持续开拓创新,继续加大数据科学领域的内容建设,推进人才数字化赋能,助力企业数字化转型。
目录
目录
第1章 绪论. 1
1.1 数据分析概述 .1
1.1.1 数据分析的分类 .3
1.1.2 数据分析的基本流程 .4
1.1.3 数据分析的落地方法 .7
1.2 数据分析师概述 .8
1.2.1 数据分析师的不同角色与职责 .8
1.2.2 数据分析师职业道德和行为准则 .10
1.3 数据相关的安全与立法 13
1.3.1 各国的数据隐私相关法律 .13
1.3.2 我国大数据立法的历程和展望 .14
1.4 本章练习题 16
第2章 表格结构数据与表结构数据. 18
2.1 表格结构数据 .19
2.1.1 表格结构数据概述 .19
2.1.2 表格结构数据特征 .20
2.2 表格结构数据的获取、引用与使用 .24
2.2.1 表格结构数据的获取 .24
2.2.2 表格结构数据的引用、查询与计算方法 .28
2.3 表结构数据 38
2.3.1 表结构数据概述 .38
2.3.2 表结构数据特征 .40
2.4 表结构数据的获取、加工与使用 45
2.4.1 表结构数据的获取 .45
2.4.2 数据库与商业智能的概念解析 .46
2.4.3 表结构数据的合并 .54
2.4.4 表结构数据的汇总 .60
2.5 本章练习题 65
第3章 数据库应用. 71
3.1 数据库相关概念 71
3.1.1 数据库简介 71
3.1.2 认识数据库 .74
3.1.3 SQL .76
3.1.4 数据仓库 .77
3.2 数据定义语言 .79
3.2.1 DDL 在业务中的作用 .80
3.2.2 定义数据库 .80
3.2.3 数据表 .82
3.2.4 数据类型 .88
3.2.5 约束条件 .92
3.3 数据操作语言 .100
3.3.1 DML 的作用 .100
3.3.2 添加数据 .100
3.3.3 将查询结果添加到表中 .102
3.3.4 更新数据 .103
3.3.5 删除数据 .104
3.4 数据查询语言 .104
3.4.1 单表查询 .105
3.4.2 函数 .125
3.4.3 多表查询 .142
3.4.4 子查询 .158
3.5 视图 168
3.5.1 视图的作用 .168
3.5.2 创建视图 .169
3.5.3 修改视图 .169
3.5.4 删除视图 .170
3.6 本章练习题 170
第4章 描述性统计分析. 181
4.1 统计学概述 181
4.1.1 统计学的定义及应用 .181
4.1.2 统计学的基本概念 .185
4.2 数据的描述性统计分析 192
4.2.1 集中趋势的描述 .192
4.2.2 离散程度的描述 .203
4.2.3 分布形态的描述 .208
4.2.4 描述性统计图表 .211
4.3 常用的数据分布 .218
4.3.1 两点分布与二项分布 .219
4.3.2 正态分布与标准正态分布 .221
4.3.3 c2 分布 .228
4.3.4 t 分布.229
4.3.5 F 分布 .230
4.3.6 分位点的概念 .232
4.4 相关分析 233
4.4.1 相关分析的含义 .233
4.4.2 简单线性相关关系的描述 .234
4.4.3 简单线性相关关系的度量 .235
4.5 本章练习题 239
第5章 多维数据透视分析 246
5.1 多维数据模型 .246
5.1.1 多维数据模型概述 .247
5.1.2 多维数据模型创建方法 .248
5.2 5W2H 思维模型 .261
5.2.1 5W2H 思维模型概述 .261
5.2.2 5W2H 思维模型应用案例 262
5.3 多维数据透视分析应用案例 .265
5.3.1 业务场景介绍 .265
5.3.2 案例设计制作过程 .265
5.4 本章练习题 267
第6章 业务分析方法 274
6.1 业务指标分析 .274
6.1.1 通用指标计算方法 .276
6.1.2 场景指标 .286
6.1.3 指标体系 .302
6.2 业务模型分析 .307
6.2.1 分类模型 .308
6.2.2 漏斗模型 .312
6.3 业务分析方法论 .318
6.3.1 帕累托分析方法 .318
6.3.2 A/B 测试分析方法 .320
6.3.3 同期群分析方法 .320
6.3.4 因果分析方法 .321
6.4 本章练习题 322
第7章 业务分析报告与数据可视化报表. 330
7.1 可视化分析图表 .330
7.1.1 业务图表决策树 .330
7.1.2 比较类图表 .331
7.1.3 序列类图表 .338
7.1.4 构成类图表 .339
7.1.5 描述类图表 .340
7.2 业务分析报表 .340
7.2.1 业务分析报表的分类与区别 .341
7.2.2 业务分析报表的创建方法 .342
7.3 业务分析报告 345
7.3.1 业务分析报告的分类 .346
7.3.2 业务分析报告撰写注意事项 .346
7.3.3 业务分析报告案例1 348
7.3.4 业务分析报告案例2 352
7.4 本章练习题 355
第8章 CDA 职业发展 360
8.1 CDA 职业概述 360
8.1.1 CDA 职业背景 .360
8.1.2 CDA 职业特点 .361
8.1.3 CDA 职业前景 .362
8.2 CDA 认证简介 363
8.2.1 CDA 认证标准 .363
8.2.2 CDA 认证方式 .364
8.2.3 CDA 认证流程 .365
8.2.4 CDA 认证证书 .366
8.3 CDA 持证人与会员 .367
8.3.1 成为CDA 会员 367
8.3.2 CDA 持证人权益 .368
8.3.3 年检和继续教育 .369
附录A 数据类型列表 370
附录B 练习题答案及解析. 373
查看全部↓
前言/序言
序言
CDA,数字化人才的身份认证
数据曾经是商业“尾气”,而现在成为当今世界的“石油”,借助合适的模型、算法、技术,可以从数据中挖掘出巨大的商业价值。数据分析极大地促进了现代服务业、制造业差异化竞争格局,将来更会成为各行业获得竞争优势的助推力。
数据分析的主要目标之一就是满足组织的业务运营需求,为业务服务。大部分组织经历了从以产品为中心到以客户为中心的过程,其数据分析的重点也从关注组织经营结果到进行全方位的客户洞察,分析方法也从以管理报表为主到微观个体的行为预测。另外,IT 技术的发展使得组织可以以更低的成本存储和处理大量的数据,促使组织不断从宏观业务分析到个体微观分析,使用的数据层次从基本属性、时点状态数据,逐渐丰富到行为数据,使用的分析技术从统计分析逐渐过渡到机器学习和深度学习。
满足业务运营需求更本质的目标是通过数据分析改变决策方式,从依靠经验转向依靠数据。目前,数据分析有两个主要阶段,分别是隐性知识显性化和显性知识算法化。前者是一个概念明晰和逐渐量化的过程,后者是提取知识形成算法并固化在业务流程系统中的过程。组织核心能力从“以人为核心”转变到“以算法为核心”。
通过数据分析进行科学决策、自主决策,从而实现业务价值,使数据分析在决策过程中不可或缺,逐渐成为组织的核心竞争