Meta2032流动性质押挖矿开发源码版丨Meta2032流动性质押挖矿系统开发(逻辑及功能)
The public chain is the core carrier of Web3.0,supporting interoperability,empowerment,and credit mechanisms,as well as various applications.The Web3.0 public chain circuit mainly includes Layer1,Layer2,and Layer0.
Blockchain technology can thus empower enterprises in many ways:providing reliable shared data and building trust between parties;Eliminate data silos,which integrate data into a system through centralized ledgers that are shared in a network and support licensee access;Give data a high degree of security
The evolution of new data oriented information technologies such as blockchain,artificial intelligence,digital twins,human-computer interaction,and the Internet of Things is not accidental,but rather a technological preparation for the evolution from Web 2.0 to Web 3.0.From a technical perspective,MetaUniverse is a trusted digital value interaction network based on the support of the Web3.0 technical system and operating mechanism,and is a new Web3.0 digital ecosystem centered on blockchain.Metaverse is a new scenario,new industry,and new ecology supported by the Web3.0 technology system with blockchain as its core,which will spawn a large number of innovative business models in the digital environment and form a new paradigm for digital space.
import io
import torch
import torch.onnx
from models.C3AEModel import PlainC3AENetCBAM
device=torch.device("cuda:0"if torch.cuda.is_available()else"cpu")
def test():
关于区块链项目技术开发唯:MrsFu123,代币发行、dapp智能合约开发、链游开发、多链钱包开发
交易所开发、量化合约开发、互助游戏开发、Nft数字藏品开发、众筹互助开发、元宇宙开发、swap开发、
链上合约开发、ido开发、商城开发等,开发过各种各样的系统模式,更有多种模式、制度、案例、后台等,成熟技术团队,欢迎实体参考。
model=PlainC3AENetCBAM()
pthfile=r'/home/joy/Projects/models/emotion/PlainC3AENet.pth'
loaded_model=torch.load(pthfile,map_location='cpu')
#try:
#loaded_model.eval()
#except AttributeError as error:
#print(error)
model.load_state_dict(loaded_model['state_dict'])
#model=model.to(device)
#data type nchw
dummy_input1=torch.randn(1,3,64,64)
#dummy_input2=torch.randn(1,3,64,64)
#dummy_input3=torch.randn(1,3,64,64)
input_names=["actual_input_1"]
output_names=["output1"]
#torch.onnx.export(model,(dummy_input1,dummy_input2,dummy_input3),"C3AE.onnx",verbose=True,input_names=input_names,output_names=output_names)
torch.onnx.export(model,dummy_input1,"C3AE_emotion.onnx",verbose=True,input_names=input_names,output_names=output_names)
if __name__=="__main__":
test()