欢迎光临散文网 会员登陆 & 注册

42篇深度图神经网络(GNN)的论文!真香!

2021-07-16 20:10 作者:深度之眼官方账号  | 我要投稿

最近(其实也就是今天)学姐开始了科(fan)学(qiang)上网,在逛github时候发现了一个宝藏——一位大佬分享的有关乎深度图神经网络的相关论文。



刚好学姐最近也在整理图神经网络的论文给微信上的小伙伴,学姐想大家伙肯定也需要这个就赶紧安排了今天的推文!



part1/经典款论文


1. KDD 2016,Node2vec 经典必读第一篇,平衡同质性和结构性

《node2vec: Scalable Feature Learning for Networks》


2. WWW2015,LINE 1阶+2阶相似度

《Line: Large-scale information network embedding》


3. KDD 2016,SDNE 多层自编码器

《Structural deep network embedding》


4. KDD 2017,metapath2vec  异构图网络

《metapath2vec: Scalable representation learning for heterogeneous networks》


5. NIPS 2013,TransE  知识图谱奠基

《Translating Embeddings for Modeling Multi-relational Data》


6. ICLR 2018,GAT  attention机制

《Graph Attention Network》


7. NIPS 2017,GraphSAGE  归纳式学习框架

《Inductive Representation Learning on Large Graphs 》


8. ICLR 2017,GCN 图神经开山之作

《SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS》


9. ICLR 2016,GGNN 门控图神经网络

《Gated Graph Sequence Neural Networks》


10. ICML 2017,MPNN  空域卷积消息传递框架

《Neural Message Passing for Quantum Chemistry》


如果你不知道怎么读论文可以先加学姐微信咱具体唠唠,因为怎么读论文的推文下周才发,嘻嘻。



part2/热门款论文



2020年之前


11.[arXiv 2019]Revisiting Graph Neural Networks: All We Have is Low-Pass Filters

重温图神经网络:我们只有低通滤波器


[论文]

https://arxiv.org/abs/1905.09550


12.[NeurIPS 2019]Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks

打破天花板:更强的多尺度深度图卷积网络


[论文] 

https://arxiv.org/abs/1906.02174



13.[ICLR 2019] Predict then Propagate: Graph Neural Networks meet Personalized PageRank

先预测后传播:图神经网络满足个性化 PageRank


[论文] 

https://arxiv.org/abs/1810.05997


[代码] 

https://github.com/klicperajo/ppnp


14.[ICCV 2019]DeepGCNs: Can GCNs Go as Deep as CNNs?

DeepGCN:GCN能像CNN一样深入吗?


[论文] 

https://arxiv.org/abs/1904.03751


[代码(Pytorch)]

https://github.com/lightaime/deep_gcns_torch


[代码(TensorFlow)]

https://github.com/lightaime/deep_gcns


15.[ICML 2018]

Representation Learning on Graphs with Jumping Knowledge Networks

基于跳跃知识网络的图表征学习


[论文] 

https://arxiv.org/abs/1806.03536


16.[AAAI 2018]Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning

深入了解用于半监督学习的图卷积网络


[论文] 

https://arxiv.org/abs/1801.07606


2020年


17.[arXiv 2020]Deep Graph Neural Networks with Shallow Subgraph Samplers

具有浅子图采样器的深图神经网络


[论文] 

https://arxiv.org/abs/2012.01380


18.[arXiv 2020]Revisiting Graph Convolutional Network on Semi-Supervised Node Classification from an Optimization Perspective

从优化的角度重新审视半监督节点分类的图卷积网络


[论文] 

https://arxiv.org/abs/2009.11469


19.[arXiv 2020]

Tackling Over-Smoothing for General Graph Convolutional Networks

解决通用图卷积网络的过度平滑


[论文] 

https://arxiv.org/abs/2008.09864


20.[arXiv 2020]DeeperGCN: All You Need to Train Deeper GCNs

DeeperGCN:训练更深的 GCN 所需的一切


[论文] 

https://arxiv.org/abs/2006.07739


[代码]

https://github.com/lightaime/deep_gcns_torch


21.[arXiv 2020]Effective Training Strategies for Deep Graph Neural Networks

深度图神经网络的有效训练策略


[论文] 

https://arxiv.org/abs/2006.07107


[代码] 

https://github.com/miafei/NodeNorm


22.[arXiv 2020]Revisiting Over-smoothing in Deep GCNs

重新审视深度GCN中的过度平滑 


[论文] 

https://arxiv.org/abs/2003.13663


23.[NeurIPS 2020]Graph Random Neural Networks for Semi-Supervised Learning on Graphs

用于图上半监督学习的图随机神经网络


[论文] 

https://proceedings.neurips.cc/paper/2020/hash/fb4c835feb0a65cc39739320d7a51c02-Abstract.html


[代码] 

https://github.com/THUDM/GRAND


24.[NeurIPS 2020]Scattering GCN: Overcoming Oversmoothness in Graph Convolutional Networks

散射GCN:克服图卷积网络中的过度平滑


[论文] 

https://proceedings.neurips.cc/paper/2020/hash/a6b964c0bb675116a15ef1325b01ff45-Abstract.html


[代码] 

https://github.com/dms-net/scatteringGCN


25.[NeurIPS 2020]Optimization and Generalization Analysis of Transduction through Gradient Boosting and Application to Multi-scale Graph Neural Networks

Transduction through Gradient Boosting 的优化和泛化分析及其在多尺度图神经网络中的应用


[论文] 

https://proceedings.neurips.cc/paper/2020/hash/dab49080d80c724aad5ebf158d63df41-Abstract.html


[代码] 

https://github.com/delta2323/GB-GNN


26.[NeurIPS 2020]Towards Deeper Graph Neural Networks with Differentiable Group Normalization

迈向具有可微组归一化的更深图神经网络


[论文] 

https://arxiv.org/abs/2006.06972


27.[ICML 2020 Workshop GRL+]A Note on Over-Smoothing for Graph Neural Networks

关于图神经网络过度平滑的说明


[论文] 

https://arxiv.org/abs/2006.13318


28.[ICML 2020]Bayesian Graph Neural Networks with Adaptive Connection Sampling

具有自适应连接采样的贝叶斯图神经网络


[论文] 

https://arxiv.org/abs/2006.04064


29.[ICML 2020]Continuous Graph Neural Networks连续图神经网络


[论文] 

https://arxiv.org/abs/1912.00967


30.[ICML 2020]Simple and Deep Graph Convolutional Networks简单和深度图卷积网络


[论文]

https://arxiv.org/abs/2007.02133


[代码] 

https://github.com/chennnM/GCNII


31.[KDD 2020] Towards Deeper Graph Neural Networks走向更深的图神经网络


[论文]

https://arxiv.org/abs/2007.09296


[代码] 

https://github.com/mengliu1998/DeeperGNN


32.[ICLR 2020]Graph Neural Networks Exponentially Lose Expressive Power for Node Classification

图神经网络对节点分类的表达能力呈指数级 下降


[论文] 

https://arxiv.org/abs/1905.10947


[代码] 

https://github.com/delta2323/gnn-asymptotics


33.[ICLR 2020] DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge:迈向节点分类的深度图卷积网络


[Paper] 

https://openreview.net/forum?id=Hkx1qkrKPr


[Code] 

https://github.com/DropEdge/DropEdge


34.[ICLR 2020] PairNorm: Tackling Oversmoothing in GNNs

PairNorm:解决GNN中的过度平滑问题


[论文]

https://openreview.net/forum?id=rkecl1rtwB


[代码]

https://github.com/LingxiaoShawn/PairNorm


35.[ICLR 2020]Measuring and Improving the Use of Graph Information in Graph Neural Networks

测量和改进图神经网络中图信息的使用


[论文]

https://openreview.net/forum?id=rkeIIkHKvS


[代码] 

https://github.com/yifan-h/CS-GNN


36.[AAAI 2020]Measuring and Relieving the Over-smoothing Problem for Graph Neural Networks from the Topological View

从拓扑角度测量和缓解图神经网络的过度平滑问题


[论文] 

https://arxiv.org/abs/1909.03211


同学们是不是发现有些论文有代码,有些论文没有代码?学姐建议学概念读没代码的,然后再读有代码的,原因的话上周的文章有写,花几分钟看一下【学姐带你玩AI】公众号的——《图像识别深度学习研究方向没有导师带该怎么学习》


part3/最新款论文


37.[arXiv 2021]Two Sides of the Same Coin: Heterophily and Oversmoothing in Graph Convolutional Neural Networks


同一枚硬币的两面:图卷积神经网络中的异质性和过度平滑


[论文] 

https://arxiv.org/abs/2102.06462v2


38.[arXiv 2021]Graph Neural Networks Inspired by Classical Iterative Algorithms

受经典迭代算法启发的图神经网络


[论文] 

https://arxiv.org/abs/2103.06064


39.[ICML 2021]Training Graph Neural Networks with 1000 Layers

训练 1000 层图神经网络


[论文] 

https://arxiv.org/abs/2106.07476


[代码]

https://github.com/lightaime/deep_gcns_torch


40.[ICML 2021] Directional Graph Networks 方向图网络


[论文] 

https://arxiv.org/abs/2010.02863


[代码] 

https://github.com/Saro00/DGN


41.[ICLR 2021]On the Bottleneck of Graph Neural Networks and its Practical Implications

关于图神经网络的瓶颈及其实际意义


[论文] 

https://openreview.net/forum?id=i80OPhOCVH2


[代码] https://github.com/tech-srl/bottleneck/


42.[ICLR 2021] Adaptive Universal Generalized PageRank Graph Neural Network


[论文] 

https://openreview.net/forum?id=n6jl7fLxrP


[代码]

https://github.com/jianhao2016/GPRGNN


43.[ICLR 2021]Simple Spectral Graph Convolution

简单的谱图卷积


[论文]

https://openreview.net/forum?id=CYO5T-YjWZV


githup原文:

https://github.com/mengliu1998/awesome-deep-gnn


以上就是学姐找到的论文了,读论文的方法可以关注【学姐带你玩儿AI】等到下周看学姐的推文


或者是直接私聊学姐聊一下自己的想法~~



给学姐点个赞吧!这是我肝文章的动力!有问题评论区直接找学姐!

42篇深度图神经网络(GNN)的论文!真香!的评论 (共 条)

分享到微博请遵守国家法律