欢迎光临散文网 会员登陆 & 注册

Prime Dream(1)——素数计数函数与它的阶

2022-01-30 00:12 作者:子瞻Louis  | 我要投稿

专栏文集:《杂文集》《数学分析》

本系列文集:《Prime Dream》

许多数论的研究大多都是围绕素数展开的,而与之相关的自然是素数计数函数:

%5Cpi(x)%3D%5Csum_%7Bp%5Cle%20x%7D1

上和号是对不大于x的素数求和,也就是说该函数用来表示不大于x的素数个数,开始之前还要再引入两个函数——切比雪夫theta、psi函数:(x%3E1

%5Cvartheta(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5Clog%20p

%5Cpsi(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5CLambda(n)

Dirichlet卷积的部分和

令*表示Dirichlet卷积,设

F(x)%3D%5Csum_%7Bn%5Cle%20x%7Df(n)%2CG(x)%3D%5Csum_%7Bn%5Cle%20x%7Dg(n)

考虑以下和式,

%5Cbegin%7Baligned%7DS(x)%26%3D%5Csum_%7Bn%5Cle%20x%7Df*g(n)%5C%5C%26%3D%5Csum_%7Bn%5Cle%20x%7D%5Csum_%7Bn%3Dab%7Df(a)g(b)%5C%5C%26%3D%5Csum_%7Bab%5Cle%20x%7Df(a)g(b)%5Cend%7Baligned%7D

可以在上式的求和中先固定a,对所有b求和,再对所有a求和,得到

%5Cbegin%7Baligned%7DS(x)%26%3D%5Csum_%7Ba%5Cle%20x%7Df(a)%5Csum_%7Bb%5Cle%5Cfrac%20xa%7Dg(b)%5C%5C%26%3D%5Csum_%7Bn%5Cle%20x%7Df(n)G%5Cleft(%5Cfrac%20xn%5Cright)%5Cend%7Baligned%7D

同理,也可得

S(x)%3D%5Csum_%7Bn%5Cle%20x%7Dg(n)F%5Cleft(%5Cfrac%20xn%5Cright)

特别地取f(n)%3D1(n)%5Cequiv1,得到

%5Csum_%7Bn%5Cle%20x%7Df(n)%5Cleft%5B%5Cfrac%20xn%5Cright%5D%3D%5Csum_%7Bn%5Cle%20x%7D%5Ctilde%7Bf%7D%20(n)

其中%5Ctilde%20f(n)f(n)的Mobius变换,将Von Mongoldt函数代入,可得

  • 1)%5Clog%20%5Bx%5D!%3D%5Csum_%7Bn%5Cle%20x%7D%5CLambda(n)%5Cleft%5B%5Cfrac%20xn%5Cright%5D

x%3Dm为整数,将右边改写一下

%5Cbegin%7Baligned%7D%5Clog%20m!%26%3D%5Csum_%7Bp%5Ek%5Cle%20m%7D%5Clog%20p%5Cleft%5B%5Cfrac%20m%7Bp%5Ek%7D%5Cright%5D%5C%5C%26%3D%5Csum_%7Bp%5Cle%20m%7D%5Csum_%7Bk%3D1%7D%5E%5Cinfty%5Cleft%5B%5Cfrac%20m%7Bp%5Ek%7D%5Cright%5D%5Clog%20p%5Cend%7Baligned%7D

最后一个等式内层的求和总是只有限项不为零的,因此可以得到阶乘的素因子分解

  • 2)m!%3D%5Cprod_%7Bp%5Cle%20x%7Dp%5E%7BA(m%2Cp)%7D%2CA(m%2Cp)%3D%5Csum_%7Bk%3D1%7D%5E%5Cinfty%5Cleft%5B%5Cfrac%20x%7Bp%5Ek%7D%5Cright%5D

具有特殊阶的部分和

对阶乘的对数用Able求和公式可得

%5Cbegin%7Baligned%7D%5Clog%5Bx%5D!%26%3D%5Csum_%7Bn%5Cle%20x%7D%5Clog%20n%3D%5Bx%5D%5Clog%20x-%5Cint_1%5Ex%5Cfrac%7B%5Bt%5D%7Dt%5Cmathrm%20dt%5C%5C%26%3Dx%5Clog%20x-x%2B1-%5C%7Bx%5C%7D%5Clog%20x%2B%5Cint_1%5Ex%5Cfrac%7B%5C%7Bt%5C%7D%7Dt%5Cmathrm%20dt%5C%5C%26%3Dx%5Clog%20x-x%2B%5Cmathcal%20O(%5Clog%20x)%5Cend%7Baligned%7D

这也就是说

  • 3)%5Csum_%7Bn%5Cle%20x%7D%5CLambda(n)%5Cleft%5B%5Cfrac%20xn%5Cright%5D%3Dx%5Clog%20x-x%2B%5Cmathcal%20O(%5Clog%20x)

将左式分为素数和素数的乘方,

%5Csum_%7Bn%5Cle%20x%7D%5CLambda(n)%5Cleft%5B%5Cfrac%20xn%5Cright%5D%3D%5Csum_%7Bp%5Cle%20x%7D%5Clog%20p%5Cleft%5B%5Cfrac%20xp%5Cright%5D%2B%5Csum_%7Bp%5Cle%20x%7D%5Csum_%7Bk%3D2%7D%5E%5Cinfty%5Cleft%5B%5Cfrac%20x%7Bp%5Ek%7D%5Cright%5D%5Clog%20p

来康康第二项,对它放缩一下

%5Cbegin%7Baligned%7D%5Csum_%7Bp%5Cle%20x%7D%5Csum_%7Bk%3D2%7D%5E%5Cinfty%5Cleft%5B%5Cfrac%20x%7Bp%5Ek%7D%5Cright%5D%5Clog%20p%26%3C%20%5Csum_%7Bp%5Cle%20x%7D%5Csum_%7Bk%3D2%7D%5E%5Cinfty%20%5Cfrac%20x%7Bp%5Ek%7D%5Clog%20p%5C%5C%26%3Dx%5Csum_%7Bp%5Cle%20x%7D%5Cfrac%7B%5Clog%20p%7D%7Bp(p-1)%7D%5C%5C%26%3Cx%5Csum_%7Bn%3D2%7D%5E%5Cinfty%5Cfrac%7B%5Clog%20n%7D%7Bn(n-1)%7D%5Cend%7Baligned%7D

可以验证最后一个级数是收敛到某个不大于%5Clog4的常数:

%5Cbegin%7Baligned%7D%5Csum_%7Bn%3D2%7D%5E%5Cinfty%5Cfrac%7B%5Clog%20n%7D%7Bn(n-1)%7D%26%3C%5Csum_%7Br%3D1%7D%5E%5Cinfty%5Csum_%7B2%5Er%3Cm%5Cle%202%5E%7Br%2B1%7D%7D%5Cfrac%7B%5Clog%202%5Er%7D%7Bm(m-1)%7D%5C%5C%26%3D%5Csum_%7Br%3D1%7D%5E%5Cinfty%7Br%5Clog%202%7D%5Csum_%7B2%5Er%3Cm%5Cle%202%5E%7Br%2B1%7D%7D%5Cfrac1%7Bm-1%7D-%5Cfrac1m%5C%5C%26%3D%5Csum_%7Br%3D1%7D%5E%5Cinfty%5Cfrac%7Br%5Clog2%7D%7B2%5Er%7D%3D%5Clog4%5Cend%7Baligned%7D

因此可以得到

%5Csum_%7Bn%5Cle%20x%7D%5CLambda(n)%5Cleft%5B%5Cfrac%20xn%5Cright%5D%3D%5Csum_%7Bp%5Cle%20x%7D%5Clog%20p%5Cleft%5B%5Cfrac%20xp%5Cright%5D%2B%5Cmathcal%20O(x)

  • 4)%5Csum_%7Bp%5Cle%20x%7D%5Clog%20p%5Cleft%5B%5Cfrac%20xp%5Cright%5D%3Dx%5Clog%20x%2B%5Cmathcal%20O(x)

Sharpiro Tauber型定理

既然这两个部分和的阶是差不多的,那我们直接来研究以下形式的和吧

  1. G(x)%3D%5Csum_%7Bn%5Cle%20x%7Df(n)%5Cleft%5B%5Cfrac%20xn%5Cright%5D%3Dx%5Clog%20x%2B%5Cmathcal%20O(x)

  2. F(x)%3D%5Csum_%7Bn%5Cle%20x%7Df(n)

  3. S(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5Cfrac%7Bf(n)%7Dn

我们想利用1.式来得到2.式的阶,首要任务就是解决掉取整的部分,注意到当x%2F2%3Cn%3Cx时,都有%5Cleft%5B%5Cfrac%20xn%5Cright%5D%3D1,因此通过以下作差可以就可以让2.式出现

%5Cbegin%7Baligned%7DG(x)-2G%5Cleft(%5Cfrac%20x2%5Cright)%26%3D%5Csum_%7Bn%5Cle%20x%2F2%7Df(n)%5Cleft(%5Cleft%5B%5Cfrac%20xn%5Cright%5D-2%5Cleft%5B%5Cfrac%20x%7B2n%7D%5Cright%5D%5Cright)%2B%5Csum_%7Bx%2F2%3Cn%5Cle%20x%7Df(n)%5Cleft%5B%5Cfrac%20xn%5Cright%5D%5C%5C%26%3D%5Csum_%7Bn%5Cle%20x%2F2%7Df(n)%5Cleft(%5Cleft%5B%5Cfrac%20xn%5Cright%5D-2%5Cleft%5B%5Cfrac%20x%7B2n%7D%5Cright%5D%5Cright)%2BF(x)-F%5Cleft(%5Cfrac%20x2%5Cright)%5Cend%7Baligned%7D

对任意t%3E0%5Bt%5D-2%5Bt%2F2%5D或为0或为1,所以得到

G(x)-2G%5Cleft(%5Cfrac%20x2%5Cright)%5Cge%20F(x)-F%5Cleft(%5Cfrac%20x2%5Cright)

又根据1.式G(x)的阶可知

%5Cbegin%7Baligned%7DG(x)-2G%5Cleft(%5Cfrac%20x2%5Cright)%26%3Dx%5Clog%20x-2%5Ccdot%5Cfrac%20x2%5Clog%5Cfrac%20x2%2B%5Cmathcal%20O(x)%5C%5C%26%3Dx%5Clog%20x-x%5Clog%20x%2B%5Cmathcal%20O(x)%5C%5C%26%3D%5Cmathcal%20O(x)%5Cend%7Baligned%7D

这也就是说存在某个常数C,使得

F(x)-F%5Cleft(%5Cfrac%20x2%5Cright)%5Cle%20G(x)-2G%5Cleft(%5Cfrac%20x2%5Cright)%5Cle%20Cx

不断用%5Cfrac%20x2%2C%5Cfrac%20x4%2C%E2%80%A6替换掉x,得到

%5Cbegin%7Baligned%7DF%5Cleft(%5Cfrac%20x2%5Cright)-F%5Cleft(%5Cfrac%20x4%5Cright)%26%5Cle%20%5Cfrac12Cx%5C%5CF%5Cleft(%5Cfrac%20x4%5Cright)-F%5Cleft(%5Cfrac%20x8%5Cright)%26%5Cle%20%5Cfrac14Cx%5C%5C%26%E2%80%A6%5Cend%7Baligned%7D

把这些不等式依次加起来,便有

F(x)%5Cle%5Cleft(1%2B%5Cfrac12%2B%5Cfrac14%2B%E2%80%A6%5Cright)Cx%3D2Cx

于是可以得到

  • 5)%5Csum_%7Bn%5Cle%20x%7Df(n)%3D%5Cmathcal%20O(x)

下面来看另一个和,因为%5Bt%5D%3Dt%2B%5Cmathcal%20O(1),所以

%5Cbegin%7Baligned%7D%5Csum_%7Bn%5Cle%20x%7Df(n)%5Cleft%5B%5Cfrac%20xn%5Cright%5D%26%3Dx%5Csum_%7Bn%5Cle%20x%7D%5Cfrac%7Bf(n)%7Dn%2B%5Cmathcal%20O%5Cleft(%5Csum_%7Bn%5Cle%20x%7Df(n)%5Cright)%5C%5C%5CRightarrow%20x%5Clog%20x%2B%5Cmathcal%20O(x)%26%3Dx%5Csum_%7Bn%5Cle%20x%7D%5Cfrac%7Bf(n)%7Dn%2B%5Cmathcal%20O(x)%5Cend%7Baligned%7D

  • 6)%5Csum_%7Bn%5Cle%20x%7D%5Cfrac%7Bf(n)%7Dn%3D%5Clog%20x%2B%5Cmathcal%20O(1)

现在我们设S(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5Cfrac%7Bf(n)%7Dn%3D%5Clog%20x%2BR(x),由6)式可知存在常数A使得%7CR(x)%7C%5Cle%20A,某一常数0%3Ca%3C1,使得

%5Cbegin%7Baligned%7DS(x)-S(ax)%26%3D%5Clog%20x%2BR(x)-%5Clog%20ax-R(ax)%5C%5C%26%3D-%5Clog%20a%2BR(x)-R(ax)%5C%5C%26%5Cge%20-%5Clog%20a-%7CR(x)%7C-%7CR(ax)%7C%5C%5C%26%5Cge-%5Clog%20a-2A%3D1%5Cend%7Baligned%7D

也就是说a%3De%5E%7B-2A-1%7D。因为S(x)是定义在x%3E1上的,所以其中要求了ax%5Cge1。另一方面,有

%5Cbegin%7Baligned%7DS(x)-S(ax)%26%3D%5Csum_%7Bax%3Cn%5Cle%20x%7D%5Cfrac%7Bf(n)%7Dn%5C%5C%26%5Cle%5Cfrac1%7Bax%7D%5Csum_%7Bax%3Cn%5Cle%20x%7Df(n)%5C%5C%26%5Cle%5Cfrac1%7Bax%7DF(x)%5Cend%7Baligned%7D

结合上面两个式子与5),就得到:对于%7CR(x)%7C%5Cle%20A,当x%5Cge%20e%5E%7B2A%2B1%7D时,都有存在两个常数C_1%2CC_2,(其中C_1%3De%5E%7B-2A-1%7D是已经确定的)

  • 7)C_1x%5Cle%5Csum_%7Bn%5Cle%20x%7Df(n)%5Cle%20C_2x

可以用大theta符号改写一下:对于x%5Cge%20e%5E%7B2A%2B1%7D,都有

  • 7')%5Csum_%7Bn%5Cle%20x%7Df(n)%3D%5CTheta(x)

将上面得到的所有结论放在一起,便组成了Shaprio Tauber型定理:若

G(x)%3D%5Csum_%7Bn%5Cle%20x%7Df(n)%5Cleft%5B%5Cfrac%20xn%5Cright%5D%3Dx%5Clog%20x%2B%5Cmathcal%20O(x)

则当x足够大时,以下两个渐进公式成立:

  1. S(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5Cfrac%7Bf(n)%7Dn%3D%5Clog%20x%2B%5Cmathcal%20O(1)

  2. C_1x%5Cle%20F(x)%3D%5Csum_%7Bn%5Cle%20x%7Df(n)%5Cle%20C_2x

其中C_1%3De%5E%7B-2A-1%7D,A为1.式中大O符号的绝对值上界

素数计数函数的阶

将4)式代入到Sharprio定理中,可得

  • 8)%5Csum_%7Bp%5Cle%20x%7D%5Cfrac%7B%5Clog%20p%7Dp%3D%5Clog%20x%2B%5Cmathcal%20O(1)

  • 9)%5Cvartheta(x)%3D%5Csum_%7Bp%5Cle%20x%7D%5Clog%20p%3D%5CTheta(x)

其中8)式就被称为Mertens第一定理,根据右侧当x%5Cto%5Cinfty时是发散的,又能再次说明素数有无穷多个。同样将4)式代入也可得

  • 10)%5Csum_%7Bn%5Cle%20x%7D%5Cfrac%7B%5CLambda(n)%7Dn%3D%5Clog%20x%2B%5Cmathcal%20O(1)

  • 11)%5Cpsi(x)%3D%5Csum_%7Bn%5Cle%20x%7D%5CLambda(n)%3D%5CTheta(x)

接下来就是要得到素数计数函数的阶了,可以利用Able求和公式作以下变换:

%5Cbegin%7Baligned%7D%5Cpi(x)%26%3D%5Csum_%7B2-%5Cdelta%3Cp%5Cle%20x%7D%5Cfrac%7B%5Clog%20p%7D%7B%5Clog%20p%7D%5Cqquad(%5Cdelta%3E0)%5C%5C%26%3D%5Cfrac%7B%5Cvartheta(x)%7D%7B%5Clog%20x%7D%2B%5Cint_%7B2-%5Cdelta%7D%5Ex%5Cfrac%7B%5Cvartheta(t)%7D%7Bt%5Clog%5E2t%7D%5Cmathrm%20dt%5Cend%7Baligned%7D

将9)式代入,因为积分

0%5Cle%5Cint_2%5E%7Bx%7D%5Cfrac%7B%5Cmathrm%20dt%7D%7B%5Clog%5E2%20t%7D%3C%5Cfrac%7Bx%7D%7B%5Clog%5E2x%7D%3D%5Cmathcal%20O%5Cleft(%5Cfrac%20x%7B%5Clog%20x%7D%5Cright)

由此可以推出对于足够大的x,存在两个常数C_1%2CC_2

  • 12)%5Cfrac%7BC_1x%7D%7B%5Clog%20x%7D%5Cle%5Cpi(x)%5Cle%5Cfrac%7BC_2x%7D%7B%5Clog%20x%7D

并且我们还得到了以下极限不发散,

%5Clim_%7Bx%5Cto%5Cinfty%7D%5Cfrac%7B%5Cpi(x)%5Clog%20x%7D%7Bx%7D%3DA

上式的比值

参考

  1. 《Introduction to analytic number theory》by Tom M.Apostol

  2. 《数论中的求和公式》Abel求和法


Prime Dream(1)——素数计数函数与它的阶的评论 (共 条)

分享到微博请遵守国家法律