欢迎光临散文网 会员登陆 & 注册

39 实战 Kaggle 比赛:图像分类(CIFAR-10)【动手学深度学习v2

2023-08-01 17:27 作者:月芜SA  | 我要投稿

CIFAR-10经典分类实战

在实践中,图像数据集通常以图像文件的形式出现。 本节将从原始图像文件开始,然后逐步组织、读取并将它们转换为张量格式。

import collections
import math
import os
import shutil
'''shell util是Python的一个倒腾文件的东西'''
import pandas as pd
import torch
import torchvision
from torch import nn
from d2l import torch as d2l


比赛数据集分为训练集和测试集,其中训练集包含50000张、测试集包含300000张图像。 在测试集中,10000张图像将被用于评估,而剩下的290000张图像将不会被进行评估,包含它们只是为了防止手动标记测试集并提交标记结果。 两个数据集中的图像都是png格式,高度和宽度均为32像素并有三个颜色通道(RGB)。 这些图片共涵盖10个类别:飞机、汽车、鸟类、猫、鹿、狗、青蛙、马、船和卡车。为了便于入门,此处提供包含前1000个训练图像和5个随机测试图像的数据集的小规模样本。

#@save
d2l.DATA_HUB['cifar10_tiny'] = (d2l.DATA_URL + 'kaggle_cifar10_tiny.zip',
                                '2068874e4b9a9f0fb07ebe0ad2b29754449ccacd')

# 如果使用完整的Kaggle竞赛的数据集,设置demo为False
demo = True

if demo:
    data_dir = d2l.download_extract('cifar10_tiny')
else:
    data_dir = '../data/cifar-10/'


#@save
def read_csv_labels(fname):
    """读取fname来给标签字典返回一个文件名"""
    with open(fname, 'r') as f:
        # 跳过文件头行(列名)
        lines = f.readlines()[1:]
    tokens = [l.rstrip().split(',') for l in lines]
    return dict(((name, label) for name, label in tokens))

labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))
print('# 训练样本 :', len(labels))
print('# 类别 :', len(set(labels.values())))


# 训练样本 : 1000
# 类别 : 10



#@save
def copyfile(filename, target_dir):
    """将文件复制到目标目录"""
    os.makedirs(target_dir, exist_ok=True)
    shutil.copy(filename, target_dir)

#@save
def reorg_train_valid(data_dir, labels, valid_ratio):
    """将验证集从原始的训练集中拆分出来"""
    # 训练数据集中样本最少的类别中的样本数
    n = collections.Counter(labels.values()).most_common()[-1][1]
    # 验证集中每个类别的样本数
    n_valid_per_label = max(1, math.floor(n * valid_ratio))
    label_count = {}
    for train_file in os.listdir(os.path.join(data_dir, 'train')):
        label = labels[train_file.split('.')[0]]
        fname = os.path.join(data_dir, 'train', train_file)
        copyfile(fname, os.path.join(data_dir, 'train_valid_test',
                                     'train_valid', label))
        if label not in label_count or label_count[label] < n_valid_per_label:
            copyfile(fname, os.path.join(data_dir, 'train_valid_test',
                                         'valid', label))
            label_count[label] = label_count.get(label, 0) + 1
        else:
            copyfile(fname, os.path.join(data_dir, 'train_valid_test',
                                         'train', label))
    return n_valid_per_label


#@save
def reorg_test(data_dir):
    """在预测期间整理测试集,以方便读取"""
    for test_file in os.listdir(os.path.join(data_dir, 'test')):
        copyfile(os.path.join(data_dir, 'test', test_file),
                 os.path.join(data_dir, 'train_valid_test', 'test',
                              'unknown'))


def reorg_cifar10_data(data_dir, valid_ratio):
    labels = read_csv_labels(os.path.join(data_dir, 'trainLabels.csv'))
    reorg_train_valid(data_dir, labels, valid_ratio)
    reorg_test(data_dir)


在这里,我们只将样本数据集的批量大小设置为32。 在实际训练和测试中,应该使用Kaggle竞赛的完整数据集,并将batch_size设置为更大的整数,例如128。 我们将10%的训练样本作为调整超参数的验证集。

batch_size = 32 if demo else 128
valid_ratio = 0.1
reorg_cifar10_data(data_dir, valid_ratio)


使用图像增广来解决过拟合的问题。例如在训练中,我们可以随机水平翻转图像。 我们还可以对彩色图像的三个RGB通道执行标准化。 下面,我们列出了其中一些可以调整的操作。


transform_train = torchvision.transforms.Compose([
    # 在高度和宽度上将图像放大到40像素的正方形
    torchvision.transforms.Resize(40),
    # 随机裁剪出一个高度和宽度均为40像素的正方形图像,
    # 生成一个面积为原始图像面积0.64~1倍的小正方形,
    # 然后将其缩放为高度和宽度均为32像素的正方形
    torchvision.transforms.RandomResizedCrop(32, scale=(0.64, 1.0),
                                                   ratio=(1.0, 1.0)),
    torchvision.transforms.RandomHorizontalFlip(),
    torchvision.transforms.ToTensor(),
    # 标准化图像的每个通道
    torchvision.transforms.Normalize([0.4914, 0.4822, 0.4465],
                                     [0.2023, 0.1994, 0.2010])])


在测试期间,我们只对图像执行标准化,以消除评估结果中的随机性。


transform_test = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize([0.4914, 0.4822, 0.4465],
                                     [0.2023, 0.1994, 0.2010])])


接下来,我们读取由原始图像组成的数据集,每个样本都包括一张图片和一个标签。


train_ds, train_valid_ds = [torchvision.datasets.ImageFolder(
    os.path.join(data_dir, 'train_valid_test', folder),
    transform=transform_train) for folder in ['train', 'train_valid']]

valid_ds, test_ds = [torchvision.datasets.ImageFolder(
    os.path.join(data_dir, 'train_valid_test', folder),
    transform=transform_test) for folder in ['valid', 'test']]


在训练期间,我们需要指定上面定义的所有图像增广操作。 当验证集在超参数调整过程中用于模型评估时,不应引入图像增广的随机性。 在最终预测之前,我们根据训练集和验证集组合而成的训练模型进行训练,以充分利用所有标记的数据。


train_iter, train_valid_iter = [torch.utils.data.DataLoader(
    dataset, batch_size, shuffle=True, drop_last=True)
    for dataset in (train_ds, train_valid_ds)]

valid_iter = torch.utils.data.DataLoader(valid_ds, batch_size, shuffle=False,
                                         drop_last=True)

test_iter = torch.utils.data.DataLoader(test_ds, batch_size, shuffle=False,
                                        drop_last=False)


定义了 7.6节中描述的Resnet-18模型。

def get_net():
    num_classes = 10
    net = d2l.resnet18(num_classes, 3)
    return net

loss = nn.CrossEntropyLoss(reduction="none")


定义了模型训练函数train

注意:这里的lr_period和lr_decay是用于对learning rate进行衰退的超参数。意思是在lr_period个轮次后lr将与lr_decay相乘从而衰退。


def train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
          lr_decay):
    trainer = torch.optim.SGD(net.parameters(), lr=lr, momentum=0.9,
                              weight_decay=wd)
    scheduler = torch.optim.lr_scheduler.StepLR(trainer, lr_period, lr_decay)
    num_batches, timer = len(train_iter), d2l.Timer()
    legend = ['train loss', 'train acc']
    if valid_iter is not None:
        legend.append('valid acc')
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
                            legend=legend)
    net = nn.DataParallel(net, device_ids=devices).to(devices[0])
    for epoch in range(num_epochs):
        net.train()
        metric = d2l.Accumulator(3)
        for i, (features, labels) in enumerate(train_iter):
            timer.start()
            l, acc = d2l.train_batch_ch13(net, features, labels,
                                          loss, trainer, devices)
            metric.add(l, acc, labels.shape[0])
            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (metric[0] / metric[2], metric[1] / metric[2],
                              None))
        if valid_iter is not None:
            valid_acc = d2l.evaluate_accuracy_gpu(net, valid_iter)
            animator.add(epoch + 1, (None, None, valid_acc))
        scheduler.step()
    measures = (f'train loss {metric[0] / metric[2]:.3f}, '
                f'train acc {metric[1] / metric[2]:.3f}')
    if valid_iter is not None:
        measures += f', valid acc {valid_acc:.3f}'
    print(measures + f'\n{metric[2] * num_epochs / timer.sum():.1f}'
          f' examples/sec on {str(devices)}')


现在,我们可以训练和验证模型了,而以下所有超参数都可以调整。 例如,我们可以增加周期的数量。当lr_periodlr_decay分别设置为4和0.9时,优化算法的学习速率将在每4个周期乘以0.9。 为便于演示,我们在这里只训练20个周期。


devices, num_epochs, lr, wd = d2l.try_all_gpus(), 20, 2e-4, 5e-4
lr_period, lr_decay, net = 4, 0.9, get_net()
train(net, train_iter, valid_iter, num_epochs, lr, wd, devices, lr_period,
      lr_decay)


train loss 0.668, train acc 0.781, valid acc 0.453
1022.7 examples/sec on [device(type='cuda', index=0), device(type='cuda', index=1)]


知识补充:

数据增广方法中,标准化处理normalize函数中的参数是从imagenet中得到的,实际取任何值都可以。影响不大

 # 标准化图像的每个通道
    torchvision.transforms.Normalize([0.4914, 0.4822, 0.4465],
                                     [0.2023, 0.1994, 0.2010])])


·weight decay和 lr decay是不同的。

ld是为了使得模型尽快收敛。

wd是为了normalization

ld的设置最好能使得lr在前期保持一个较大得值。后期再变小。比较常用的办法是用cos函数来实现。





39 实战 Kaggle 比赛:图像分类(CIFAR-10)【动手学深度学习v2的评论 (共 条)

分享到微博请遵守国家法律