欢迎光临散文网 会员登陆 & 注册

阿罗不可能

2019-08-31 11:40 作者:黑月白骑  | 我要投稿

  阿罗不可能性定理是指:
  不可能从个人偏好顺序推导出群体偏好顺序。阿罗认为,个人偏好顺序和群体偏好顺序都应符合两个公理和五个条件。
  这两个公理是:
(1)完备性公理。对任意两个决策方案X和Y,要么对X的偏好甚于或无差异于Y,要么对Y的偏好甚于或无差异于X。
(2)传递性公理。对任意三个方案X、Y和Z,若对X的偏好甚于或无差异于Y。而对Y的偏好甚于或无差异于Z,则对X的偏好甚于或无差异于Z。


阿罗的不可能定理源自孔多塞的“投票悖论”,早在十八世纪法国思想
西方经济学 家孔多赛就提出了著名的“投票悖论”:假设甲乙丙三人,面对ABC三个备选方案,有如图的偏好排序。
甲(a>b>c);乙(b>c>a);丙(c>a>b)注:甲(a>b>c)代表——甲偏好a胜于b,又偏好b胜于c。
1、若取“a”、“b”对决,那么按照偏好次序排列如下:
甲(a>b);乙(b>a);丙(a>b);社会次序偏好为(a>b)
2、若取“b”、“c”对决,那么按照偏好次序排列如下:
甲(b>c);乙(b>c);丙(c>b);社会次序偏好为(b>c)
3、若取“a”、“c”对决,那么按照偏好次序排列如下:
甲(a>c);乙(c>a);丙(c>a);社会次序偏好为(c>a)
于是得到三个社会偏好次序——(a>b)、(b>c)、(c>a),其投票结果显示“社会偏好”有如下事实:社会偏好a胜于b、偏好b胜于c、偏好c胜于a。显而易见,这种所谓的“社会偏好次序”包含有内在的矛盾,即社会偏好a胜于c,而又认为a不如c!所以按照投票的大多数规则,不能得出合理的社会偏好次序。


阿罗的不可能性定理是指,如果众多的社会成员具有不同的偏好,而社会又有多种备选方案,那么在民主的制度下不可能得到令所有的人都满意的结果。
阿罗不可能定理说明,依靠简单多数的投票原则,要在各种个人偏好中选择出一个共同一致的顺序,是不可能的。这样,一个合理的公共产品决定只能来自于一个可以胜任的公共权利机关,要想借助于投票过程来达到协调一致的集体选择结果,一般是不可能的。

公理1:个体可以有任何偏好;而且是民主选择——每个社会成员都可以自由地按自己的偏好进行选择(数学上称为原则U—无限制原则:>i,u=1,2,…, m在x上的定义方式无任何限制)。
公理2:不相干的选择是互相独立的;(数学上称为原则I——独立性原则:对于X中的两个事件X和Y,对它们做出的偏好判断与X中的任何其他事件无关)。
公理3:社会价值与个体价值之间有正向关联;(数学上称为原则P—一致性原则:如果对X中的两个事件X和Y,对于所有的i都有xiY不成立。就是说,每人都有同样明确态度的两件事,社会也应该有同样的态度。)
公理4:没有独裁者——不存在能把个体偏好强加给社会的可能。(数学上称为原则D——非独裁原则:不存在某个i,使得阿罗证明,满足这4条公理表述的要求的民主决策的规则是不存在的,就是著名的“阿罗不可能性定理”:如果X中的事件个数不小于3,那么就不存在任何遵循原则U,P,I,D的规则(称为“社会福利函数”)。这表明满足所有一般条件的民主选择要么是强加的,要么就是独裁的结果。、

一个社会不可能有完全的每个个人的自由——否则将导致独裁;一个社会也不可能实现完全的自由经济——否则将导致垄断。


条件
1、所有投票人就备选方案所想到的任何一种次序关系都是实际可能的。
该公理表明:选民对候选人的任何一种排序都是允许的,也就是每一位选民可以完全按照各自的意愿挑选自己中意的候选人。
2、对任意一对备选方案 x 、y ,如果对于任何投票人都有 x ≥ y ,根据选举规则就应该确定 x ≥ y ;而且当且仅当对所有投票人都有 x = y 时,根据选举规则得到的最后结果才能取等号。
该公理表明:全体选民的一致愿望必须得到尊重,同时每个选民的意愿也不能受到随意的忽略,体现了选民的主权特性。
3、对任意一对备选方案 x 、y ,如果在某次投票的结果中有 x > y ,那么在另一次投票中,如果在每位投票人排序中 x 的位置保持不变或提前,则根据同样的选举规则得到的最终结果也应包括 x > y。
该公理表明:如果所有选民对某位候选人的喜欢程度相对于其他候选人来说没有降低,那么该候选人在选举结果中的位置不会变化。
4、如果在两次投票过程中,备选方案集合的子集中各元素的排序没有改变,那么在这两次选举的最终结果中,该子集内各元素的排列次序同样没有变化。
该公理表明:某一组候选人在选举结果中的相对位置不会受除他们以外的其他候选人选举地位变动的影响,反映了无关候选人的独立性。公理3和公理4结合在一起,说明候选人的选举成绩只取决于选民对他们作出的评价。
5、不存在这样的投票人,使得对于任意一对备选方案 x 、y ,只要该投票人在选举中确定 x > y ,选举规则就确定 x > y。
该公理表明:不存在能够仅凭个人意愿就决定选举结果的独裁者。


当一个社会中的个体数目确定。 面临的是不少于三种方案的选择时,不可能同时满足帕斯托雷法则。无限制定义域和无关背景下的锁定力,以及非独裁这四个条件。


阿罗不可能的评论 (共 条)

分享到微博请遵守国家法律