欢迎光临散文网 会员登陆 & 注册

多伦多大学发布用于自动驾驶感知和预测的隐式占用流场

2023-11-01 10:29 作者:计算机视觉life  | 我要投稿

#论文# CVPR 2023 (Highlight)|多伦多大学发布用于自动驾驶感知和预测的隐式占用流场

【Implicit Occupancy Flow Fields for Perception and Prediction in Self-Driving】

文章链接:[2308.01471] Implicit Occupancy Flow Fields for Pe...

项目主页:waabi.ai/implicito/

自动驾驶车辆(SDV)必须能够感知其周围环境并预测其他交通参与者的未来行为。现有的方法要么进行对象检测,然后对检测到的对象进行轨迹预测,要么预测整个场景的密集占用和流动网格。前一种方法存在安全问题,因为为了效率,需要将检测数量保持在较低水平,从而牺牲了对象的召回率。后一种方法由于输出网格的高维性,计算成本很高,并且受到全卷积网络固有的有限感受野的影响。

此外,这两种方法都使用了许多计算资源来预测运动规划器可能永远不会查询的区域或对象。因此,我们提出了一种统一的感知和未来预测方法,通过单个神经网络隐式地表示随时间变化的占用率和流量。我们的方法避免了不必要的计算,因为它可以由运动规划器在连续的时空位置直接查询。此外,我们设计了一种架构,通过添加高效且有效的全局注意机制,克服了先前显式占用预测方法的有限感受野。通过在城市和高速公路环境中进行广泛实验,我们证明了我们的隐式模型优于当前的最先进技术。


多伦多大学发布用于自动驾驶感知和预测的隐式占用流场的评论 (共 条)

分享到微博请遵守国家法律