【菲赫金哥尔茨微积分学教程精读笔记Ep111】主部的分出
今天开始聊无穷小的主部,实际上就是一种将一般函数转化为分式的形式的方式,更精确的内容,到泰勒公式会提到。
63主部的分出
a.定义

b.例子

1-cos x=2[sin(x/2)]^2~2*(x/2)^2=x^2/2;
tan x-sin x=sin x(1/cos x-1)=sin x[(1-cos x)/cos x]~x[x^2/2]=x^3/2;
(x+1)^(1/2)+(x-1)^(1/2)-2x^(1/2)
=[(x+1)^(1/2)-x^(1/2)]-[x^(1/2)-(x-1)^(1/2)]
=1/[(x+1)^(1/2)+x^(1/2)]-1/[x^(1/2)+(x-1)^(1/2)]
=[(x-1)^(1/2)-(x+1)^(1/2)]/[(x+1)^(1/2)+x^(1/2)][x^(1/2)+(x-1)^(1/2)]
=-2/[(x+1)^(1/2)+x^(1/2)][x^(1/2)+(x-1)^(1/2)][(x-1)^(1/2)+(x+1)^(1/2)]~-1/4x^(3/2).
到这里!