欢迎光临散文网 会员登陆 & 注册

Fourier分析的那些事

2022-03-11 22:45 作者:子瞻Louis  | 我要投稿

已收入文集《Analysis》

在我第一期专栏里,推导了一个周期为T的函数g在满足一定条件时可以写为以下形式,

  • g(u)%3D%5Ctilde%7Bg%7D%20(u)%3A%3D%5Cfrac%7Ba_0%7D2%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20a_n%5Ccos%20%5Cfrac%7B2%5Cpi%20nu%7D%7BT%7D%2Bb_n%5Csin%5Cfrac%7B2%5Cpi%20nu%7DT

这里采用记号%5Ctilde%20f表示f的Fourier级数或积分以区分原本的函数f

不过有一个问题,在函数的某些“特殊”的点处它是否收敛呢?若收敛它又收敛到多少呢?比如下面的函数

A:(1,0)

在x=1处它的Fourier级数是怎么样的呢?实际上关于这个三角级数的逐点收敛性研究通常非常微妙,尽管它在近代函数论中占据了重要地位,但对有逐点收敛于它本身的三角级数表示的函数,这种函数类的内部结构至今也没有描述清楚。不过本期当然是不会讨论太高深的问题了

为了方便,,令x%3D%5Cfrac%7B2%5Cpi%20u%7DT,于是得到%5Ctilde%20f(x)是x的周期为2π的函数,

%5Ctilde%20f(x)%3A%3D%5Ctilde%20g%5Cleft(%5Cfrac%20%7BTx%7D%7B2%5Cpi%7D%5Cright)%3D%5Cfrac%7Ba_0%7D2%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20a_n%5Ccos%20nx%2Bb_n%5Csin%20nx

其中

a_n%3D%5Cfrac1%5Cpi%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(t)%5Ccos%20nt%5Cmathrm%20dt%2C

b_n%3D%5Cfrac1%5Cpi%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(t)%5Csin%20nt%5Cmathrm%20dt

Riemann-Lebesgue引理

下面将叙述的是一个十分重要的引理,它是研究Fourier级数逐点收敛性的基础:

若局部可积函数f在区间(%5Calpha%2C%5Cbeta)上(至少在反常积分意义下)绝对可积,则

  • %5Clim_%7B%5Cmathbb%20R%5Cni%5Clambda%5Cto%5Cinfty%7D%5Cint_%5Calpha%5E%5Cbeta%20f(x)e%5E%7Bi%5Clambda%20x%7D%5Cmathrm%20dx%3D0

这里%5Calpha%2C%5Cbeta均可以取正无穷或负无穷

证  因为f(%5Calpha%2C%5Cbeta)上绝对可积,所以对任意%5Cepsilon%3E0,可以找到一个区间%5Ba%2Cb%5D%5Csubset%20(%5Calpha%2C%5Cbeta),使得对任何%5Clambda%5Cin%5Cmathbb%20R都有

%5Cleft%7C%5Cint_%5Calpha%5E%5Cbeta%20f(x)e%5E%7Bi%5Clambda%20x%7D%5Cmathrm%20dx-%5Cint_a%5Eb%20f(x)e%5E%7Bi%5Clambda%20x%7D%5Cmathrm%20dx%5Cright%7C%3C%5Cepsilon

此时f%5Ba%2Cb%5D上是Riemann可积的,设%5Ba%2Cb%5D的一个分割

%5C%7Ba%3Dx_0%3Cx_1%3C%5Cdots%3Cx_n%3Db%5C%7D

m_j%3A%3D%5Cinf_%7Bx%5Cin%5Bx_%7Bj-1%7D%2Cx_j%5D%7Df(x)

引入%5Ba%2Cb%5D上的分段常函数

g(x)%3Dm_j%2Cx_%7Bj-1%7D%5Cle%20x%5Cle%20x_j

%5Ceta%20%3E0%5Ba%2Cb%5D上Riemann可积,可得

%5Cbegin%7Baligned%7D%5Cleft%7C%5Cint_a%5Eb%20f(x)e%5E%7Bi%5Clambda%20x%7D%5Cmathrm%20dx-%5Cint_a%5Eb%20g(x)e%5E%7Bi%5Clambda%20x%7D%5Cmathrm%20dx%5Cright%7C%26%5Cle%5Cint_a%5Eb%20%7Cf(x)-g(x)%7C%7Ce%5E%7Bi%5Clambda%20x%7D%7C%5Cmathrm%20d%7C%5C%5C%26%5Cle%5Cint_a%5Eb%7Cf(x)-g(x)%7C%5Cmathrm%20dx%5C%5C%26%3C(b-a)%5Cepsilon_1%5Cend%7Baligned%7D

又由于

%5Cbegin%7Baligned%7D%5Cint_a%5Eb%20g(x)e%5E%7Bi%5Clambda%20x%7D%5Cmathrm%20dx%26%3D%5Csum_%7Bj%3D1%7D%5En%5Cint_%7Bx_%7Bj-1%7D%7D%5E%7Bx_j%7Dm_je%5E%7Bi%5Clambda%20x%7D%5Cmathrm%20dx%5C%5C%26%3D%5Cfrac1%7Bi%5Clambda%7D%5Csum_%7Bj%3D1%7D%5Enm_je%5E%7Bi%5Clambda%20x_j%7D-m_je%5E%7Bi%5Clambda%20x_%7Bj-1%7D%7D%5Cxrightarrow%7B%5Clambda%5Cto%5Cinfty%7D0%5Cend%7Baligned%7D

于是便得到

%5Cint_%5Calpha%5E%5Cbeta%20f(x)e%5E%7Bi%5Clambda%20x%7D%5Cmathrm%20dx%5Cxrightarrow%7B%5Clambda%5Cto%5Cinfty%7D0

%5Csquare%0A

此外,分离实部与虚部还可得当%5Cmathbb%20R%5Cni%5Clambda%5Cto%5Cinfty

%5Cint_%5Calpha%5E%5Cbeta%20f(x)%5Ccos%7B%5Clambda%20x%7D%5Cmathrm%20dx%5Cto0

%5Cint_%5Calpha%5E%5Cbeta%20f(x)%5Csin%7B%5Clambda%20x%7D%5Cmathrm%20dx%5Cto0

Dirichlet核与局部化原理

根据Euler公式,Fourier级数可写为如下形式

%5Ctilde%20f(x)%3D%5Csum_%7Bn%3D-%5Cinfty%7D%5E%5Cinfty%5Cleft(%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(t)e%5E%7B-int%7D%5Cmathrm%20dt%5Cright)e%5E%7Binx%7D

该级数理解为柯西主值意义下的级数,即

%5Csum_%7Bn%3D-%5Cinfty%7D%5E%5Cinfty%3A%3D%5Clim_%7BM%5Cto%5Cinfty%7D%5Csum_%7Bn%3D-M%7D%5EM

取其部分和,

%5Cbegin%7Baligned%7D%5Ctilde%20f_N(x)%26%3D%5Csum_%7Bn%3D-N%7D%5EN%5Cleft(%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(t)e%5E%7B-int%7D%5Cmathrm%20dt%5Cright)e%5E%7Binx%7D%5C%5C%26%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(t)%5Ccolor%7Bblue%7D%7B%5Csum_%7Bn%3D-N%7D%5ENe%5E%7Bin(x-t)%7D%7D%5Cmathrm%20dt%5Cend%7Baligned%7D

记蓝色部分为%5Cmathcal%20D_N(x-t),即

%5Cmathcal%20D_N(t)%3D%5Csum_%7Bn%3D-N%7D%5ENe%5E%7Bint%7D

称它为Dirichlet核,显然它有以下性质:

  1. %5Cforall%20N%5Cin%5Cmathbb%20N%2CA%5Cin%5Cmathbb%20R%2C%5Cfrac1%7B2%5Cpi%7D%5Cint_A%5E%7BA%2B2%5Cpi%7D%5Cmathcal%20D_N(t)%5Cmathrm%20dt%3D1

  2. %5Cmathcal%20D_N(t)%3D%5Cmathcal%20D_N(-t)

利用这两条性质以及%5Ctilde%20f_N的周期性,可得

%5Ctilde%20f_N(x)%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_0%5E%5Cpi(f(x%2Bt)%2Bf(x-t))%5Cmathcal%20D_N(t)%5Cmathrm%20dt

对Dirichlet核继续计算,可得

%5Cbegin%7Baligned%7D%5Cmathcal%20D_N(t)%3D%5Csum_%7Bn%3D-N%7D%5ENe%5E%7Bint%7D%26%3D%5Cfrac%7Be%5E%7Bi(N%2B1)t%7D-e%5E%7BiNt%7D%7D%7Be%5E%7Bit%7D-1%7D%5C%5C%26%3D%5Cfrac%7Be%5E%7Bi(N%2B1%2F2)t%7D-e%5E%7B-i(N%2B1%2F2)t%7D%7D%7Be%5E%7Bit%2F2%7D-e%5E%7B-it%2F2%7D%7D%5C%5C%26%3D%5Cfrac%7B%5Csin%5Cleft(N%2B%5Cfrac12%5Cright)t%7D%7B%5Csin%5Cfrac%2012t%7D%5Cend%7Baligned%7D

代回至部分和中,可得

%5Ctilde%20f_N(x)%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_0%5E%5Cpi(f(x%2Bt)%2Bf(x-t))%5Cfrac%7B%5Csin%5Cleft(N%2B%5Cfrac12%5Cright)t%7D%7B%5Csin%5Cfrac%2012t%7D%5Cmathrm%20dt

然后可以试试将积分区间拆开为%5B0%2C%5Cdelta)%5Ccup%5B%5Cdelta%2C%5Cpi%5D,其中%5Cdelta%3E0

因为当%5Cdelta%5Cle%20t%5Cle%5Cpi时,有0%3C%5Csin%5Cfrac%5Cdelta2%5Cle%5Csin%5Cfrac%20t2,所以根据Riemann-Lebesgue引理有

%5Cint_%5Cdelta%5E%5Cpi(f(x%2Bt)%2Bf(x-t))%5Cfrac%7B%5Csin%5Cleft(N%2B%5Cfrac12%5Cright)t%7D%7B%5Csin%5Cfrac%2012t%7D%5Cmathrm%20dt%5Cxrightarrow%7BN%5Cto%5Cinfty%7D0

由此可得当N%5Cto%5Cinfty时,

%5Ctilde%20f_N(x)%3D%5Cfrac1%7B2%5Cpi%7D%5Cint_0%5E%5Cdelta(f(x%2Bt)%2Bf(x-t))%5Cfrac%7B%5Csin%5Cleft(N%2B%5Cfrac12%5Cright)t%7D%7B%5Csin%5Cfrac%2012t%7D%5Cmathrm%20dt%2Bo(1)

这个等式表明了函数的Fourier级数在一个点的收敛性完全取决于在以这个点为中心delta为半径的邻域内的性质,这就是所谓的局部化原理。由于%5Cdelta可以任意小,所以局部化原理也可以简单表述为函数在x的任意小邻域内的性质决定其Fourier级数的收敛性

观察被积函数,可以较自然的引出一个定义:

%5Cbar%20f(x)%3A%3D%5Clim_%7Bh%5Cto%2B0%7D%5Cfrac%7Bf(x%2Bh)%2Bf(x-h)%7D2

接着就是结论了

Fourier级数收敛性

先给出两个定义:

  1. 定义f在x的左右极限:

    f(x%2B)%3A%3D%5Clim_%7Bh%5Cto%2B0%7Df(x%2Bh)%2C%5Cquad%20f(x-)%3A%3D%5Clim_%7Bh%5Cto%2B0%7Df(x-h)

  2. 函数f在点x连续或第一类间断,若对充分小的%5Cdelta%3E0,存在M%3E0%2C0%3Ca%5Cle1,使

    %7Cf(x%5Cpm%20t)-f(x%5Cpm)%7C%3CMt%5Ea%2C(0%3Ct%3C%5Cdelta)

    则称f在点x满足Hölder条件,特别的,当a=1是称为Lipschitz条件

(定理)f%3A%5Cmathbb%20R%5Cto%5Cmathbb%20C是周期为2π,在闭区间%5B-%5Cpi%2C%5Cpi%5D上绝对可积的函数,若f在点x满足Hölder条件,则其Fourier级数在x收敛,且

%5Csum_%7Bn%3D-%5Cinfty%7D%5E%5Cinfty%5Cleft(%5Cfrac1%7B2%5Cpi%7D%5Cint_%7B-%5Cpi%7D%5E%5Cpi%20f(t)e%5E%7B-int%7D%5Cmathrm%20dt%5Cright)e%5E%7Binx%7D%3D%5Cbar%20f(x)

证  f在点x满足Hölder条件时,对0%3Ct%3C%5Cdelta

%5Cfrac%7B%7Cf(x%5Cpm%20t)-f(x%5Cpm)%7C%7Dt%3CMt%5E%7B1-a%7D

由此可得

%5Cvarphi(t)%3A%3D%5Cfrac%7Bf(x%2Bt)-f(x%2B)%2Bf(x-t)-f(x-)%7Dt

在区间%5B0%2C%5Cdelta%5D上绝对可积。又有

%5Ctilde%20f_N(x)-%5Cbar%20f(x)%3D%5Cfrac1%7B%5Cpi%7D%5Cint_0%5E%5Cdelta%5Cvarphi(t)%5Cfrac%7Bt%7D%7B2%5Csin%5Cfrac%2012t%7D%5Csin%5Cleft(N%2B%5Cfrac12%5Cright)t%5Cmathrm%20dt%2Bo(1)

%5Cdelta%5Cto0,此时2%5Csin%5Cfrac12t%5Csim%20t,再由Riemann-Lebesgue引理可知上式当N%5Cto%5Cinfty趋于零,即

%5Clim_%7BN%5Cto%5Cinfty%7D%5Ctilde%20f_N(x)%3D%5Cbar%20f(x)

%5Csquare%0A

该定理可以同样简诉为满足Hölder条件的函数的Fourier级数收敛于它任意小的邻域中的左右平均值,不难发现它正好与局部化引理相对应

还有最后一步,Dini-Lipschitz判别法只给出了周期为2π的函数其Fourier级数收敛的充分条件,但因为最开始我们用了代换x%3D%5Cfrac%7B2%5Cpi%20u%7DT,这可以将任意一个周期为T的函数转化为周期为2π的函数,所以我们实际上是得到了对任意周期函数其Fourier级数收敛的充分条件。现在再将x%3D%5Cfrac%7B2%5Cpi%20u%7DT代入回原式可得:

  • %5Cbar%20f%5Cleft(%5Cfrac%7B2%5Cpi%20u%7D%7BT%7D%5Cright)%3D%5Cbar%7Bg%7D%20(u)%3D%5Cfrac%7Ba_0%7D2%2B%5Csum_%7Bn%3D1%7D%5E%5Cinfty%20a_n%5Ccos%20%5Cfrac%7B2%5Cpi%20nu%7D%7BT%7D%2Bb_n%5Csin%5Cfrac%7B2%5Cpi%20nu%7DT

Fourier积分的收敛性

利用类似的方法,可将Fourier级数收敛的判别法推广至Fourier积分,已知对非周期函数,当它满足一定条件时,有

  • f(x)%3D%5Ctilde%20f(x)%3A%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20%5Cunderbrace%7B%5Cleft(%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)e%5E%7B-2%5Cpi%20i%5Comega%20t%7D%5Cmathrm%20dt%5Cright)%7D_%7B%5Chat%20f(%5Comega)%7De%5E%7B2%5Cpi%20i%5Comega%20x%7D%5Cmathrm%20d%5Comega

这里的积分同样也为主值意义下的积分,即

%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%3A%3D%5Clim_%7BA%5Cto%5Cinfty%7D%5Cint_%7B-A%7D%5EA

(定理)f%3A%5Cmathbb%20R%5Cto%5Cmathbb%20C是绝对可积的函数,若它在点x处满足Lipschitz条件,则其Fourier积分在点x处收敛于f左右极限的平均

证  A%3E0

%5Ctilde%20f_A(x)%3D%5Cint_%7B-A%7D%5EA%20%7B%5Cleft(%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)e%5E%7B-2%5Cpi%20i%5Comega%20t%7D%5Cmathrm%20dt%5Cright)%7De%5E%7B2%5Cpi%20i%5Comega%20x%7D%5Cmathrm%20d%5Comega

因为f绝对可积,所以这里可以合理的交换上式的积分次序,

%5Cbegin%7Baligned%7D%5Ctilde%20f_A(x)%26%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)%5Cleft(%5Cint_%7B-A%7D%5EAe%5E%7B2%5Cpi%20i%5Comega(x-t)%7D%5Cmathrm%20d%5Comega%5Cright)%5Cmathrm%20dt%5C%5C%26%3D%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20f(t)%5Cfrac%7B%5Csin2%5Cpi%20A(x-t)%7D%7B%5Cpi%20(x-t)%7D%5Cmathrm%20dt%5C%5C%26%3D%5Cint_0%5E%5Cinfty%20(f(x%2Bt)%2Bf(x-t))%5Cfrac%7B%5Csin%7B2%5Cpi%20At%7D%7D%7B%5Cpi%20t%7D%5Cmathrm%20dt%5Cend%7Baligned%7D

因为Dirichlet积分

%5Cint_%7B0%7D%5E%5Cinfty%5Cfrac%7B%5Csin%7B2%5Cpi%20At%7D%7D%7Bt%7D%5Cmathrm%20dt%3D%5Cfrac%5Cpi%202

所以

%5Cbar%20f(x)%3D%5Cint_%7B0%7D%5E%5Cinfty(f(x%2B)%2Bf(x-))%5Cfrac%7B%5Csin%7B2%5Cpi%20At%7D%7D%7B%5Cpi%20t%7D%5Cmathrm%20dt

因此有

%5Cbegin%7Baligned%7D%5Ctilde%20f_A(x)-%5Cbar%20f(x)%26%3D%5Cfrac1%5Cpi%5Cint_0%5E%5Cinfty%20%5Cvarphi(t)%7B%5Csin%7B2%5Cpi%20At%7D%7D%5Cmathrm%20dt%5C%5C%26%3D%5Cfrac1%5Cpi%5Cint_0%5E%5Cdelta%5Cvarphi(t)%5Csin2%5Cpi%20At%5Cmathrm%20dt%2B%5Cfrac1%5Cpi%5Cint_%5Cdelta%5E%5Cinfty%5Cvarphi(t)%5Csin2%5Cpi%20At%5Cmathrm%20dt%5Cend%7Baligned%7D

其中

%5Cvarphi(t)%3A%3D%5Cfrac%7Bf(x%2Bt)-f(x%2B)%2Bf(x-t)-f(x-)%7Dt

f在点x满足Hölder条件使得上式在%5B0%2C%5Cdelta%5D上绝对可积,根据Riemann-Lebesgue引理可知

%5Cfrac1%5Cpi%5Cint_0%5E%5Cdelta%5Cvarphi(t)%5Csin2%5Cpi%20At%5Cmathrm%20dt%5Cxrightarrow%7BA%5Cto%5Cinfty%7D0

而第二项又可以写成f(x-t)%2Cf(x%2Bt)%2Cf(x%2B)%2Cf(x-)的四个积分之和,对前两个可以在此用Riemann-Lebesgue引理说明他们趋于零,而后面两个相对于积分是常因子,可以提到积分外,而根据Dirichlet积分的收敛性又可得后面两个积分也趋于零,于是

%5Clim_%7BA%5Cto%20%5Cinfty%7D%5Ctilde%20f_A(x)%3D%5Cbar%20f(x)%0A

%5Csquare%0A

Fourier分析的那些事的评论 (共 条)

分享到微博请遵守国家法律