【标题速读】【nbt】【2023年】【5-8月】

声明:本专栏主要对生命科学领域的一些期刊文章标题进行翻译,所有内容均由本人手工整理翻译。由于本人专业为生物分析相关,其他领域如果出现翻译错误请谅解。
1.Recording transcriptional histories. Human embryonic kidney cells express a protein-based ticker tape recorder stained with different colored dyes. The ticker tape designs from Lin et al. record single-cell transcriptional histories over time.
记录转录历史。人类胚胎肾细胞表达一种基于蛋白质的自动收报机磁带录音机,并用不同颜色的染料染色。 Lin 等人的收报机磁带设计记录单细胞随着时间的转录历史。

2.High-throughput retrieval of target sequences from complex clone libraries using CRISPRi.
使用 CRISPRi 从复杂克隆文库中高通量检索目标序列。
3.Time-tagged ticker tapes for intracellular recordings.
用于细胞内记录的带有时间标记的自动收报机磁带。
4.Recording of cellular physiological histories along optically readable self-assembling protein chains.
沿着光学可读的自组装蛋白质链记录细胞生理历史。
5.Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing.
无线、闭环、智能绷带,配有集成传感器和刺激器,可实现高级伤口护理和加速愈合。
6.Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing.
重新设计腺嘌呤脱氨酶 TadA-8e,以实现高效且特异性的基于 CRISPR 的胞嘧啶碱基编辑。
7.Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity.
将腺嘌呤碱基编辑器进化为小型、高效、脱靶活性低的胞嘧啶碱基编辑器。
8.Improved cytosine base editors generated from TadA variants.
改进了从 TadA 变体生成的胞嘧啶碱基编辑器。
9.Programmable eukaryotic protein synthesis with RNA sensors by harnessing ADAR.
利用 ADAR 使用 RNA 传感器进行可编程真核蛋白质合成。
10.Multifactorial profiling of epigenetic landscapes at single-cell resolution using MulTI-Tag.
使用 MulTI-Tag 以单细胞分辨率对表观遗传景观进行多因素分析。
11.Protection of cell therapeutics from antibody-mediated killing by CD64 overexpression.
通过 CD64 过表达保护细胞治疗免受抗体介导的杀伤。
===================================
1.Expansion microscopy. Micrograph of the mouse hindbrain with total protein content in cyan, lipids in magenta and presynaptic vesicles in yellow. Klimas et al. developed an expansion microscopy technique that retains nucleic acids, proteins and lipids without the need for a separate anchoring step.
膨胀显微镜。小鼠后脑的显微照片,其中青色为总蛋白质含量,洋红色为脂质,黄色为突触前囊泡。克利马斯等人开发了一种扩展显微镜技术,无需单独的锚定步骤即可保留核酸、蛋白质和脂质。

2.The expanding vistas of spatial transcriptomics.
空间转录组学的广阔前景。
3.Identification of patient-specific CD4+ and CD8+ T cell neoantigens through HLA-unbiased genetic screens.
通过 HLA 无偏见遗传筛查鉴定患者特异性 CD4+ 和 CD8+ T 细胞新抗原。
4.Integration of whole transcriptome spatial profiling with protein markers.
全转录组空间分析与蛋白质标记的整合。
5.Multimodal chromatin profiling using nanobody-based single-cell CUT&Tag.
使用基于纳米抗体的单细胞 CUT&Tag 进行多模式染色质分析。
6.Nanobody-tethered transposition enables multifactorial chromatin profiling at single-cell resolution.
纳米抗体栓系转座能够以单细胞分辨率进行多因素染色质分析。
7.scChIX-seq infers dynamic relationships between histone modifications in single cells.
scChIX-seq 推断单细胞中组蛋白修饰之间的动态关系。
8.In vivo development of immune tissue in human intestinal organoids transplanted into humanized mice.
移植到人源化小鼠体内的人肠道类器官中免疫组织的体内发育。
9.Functional analysis of structural variants in single cells using Strand-seq.
使用 Strand-seq 对单细胞结构变异进行功能分析。
10.A proteome-wide atlas of drug mechanism of action.
药物作用机制的全蛋白质组图谱。
11.Magnify is a universal molecular anchoring strategy for expansion microscopy.
Magnify 是一种用于扩展显微镜的通用分子锚定策略。
12.Control-independent mosaic single nucleotide variant detection with DeepMosaic.
使用 DeepMosaic 进行不依赖于控制的嵌合单核苷酸变异检测。
===================================
1.Seeing cells with sound. Artistic impression of cells generating sound waves as a result of producing gas vesicles. Hurt et al. identify acoustic reporter genes that produce gas vesicles with strong non-linear ultrasound contrast.
用声音看到细胞。细胞因产生气泡而产生声波的艺术印象。赫特等人识别产生具有强非线性超声波的气体囊泡的超声差报告基因。

2.Accurate isoform discovery with IsoQuant using long reads.
使用长读通过 IsoQuant 准确发现异构体。
3.Genomically mined acoustic reporter genes for real-time in vivo monitoring of tumors and tumor-homing bacteria.
通过基因组挖掘声学报告基因,用于实时体内监测肿瘤和肿瘤归巢细菌。
4.Facile repurposing of peptide–MHC-restricted antibodies for cancer immunotherapy.
轻松重新利用肽-MHC 限制性抗体用于癌症免疫治疗。
5.A genetically encoded sensor measures temporal oxytocin release from different neuronal compartments.
基因编码传感器测量不同神经元区室的暂时催产素释放。
6.Heritable transgene-free genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks.
通过将野生型芽嫁接到转基因供体砧木上,对植物进行可遗传的非转基因基因组编辑。
7.Precise cut-and-paste DNA insertion using engineered type V-K CRISPR-associated transposases.
使用工程型 VK CRISPR 相关转座酶进行精确剪切和粘贴 DNA 插入。
8.High-throughput, targeted MHC class I immunopeptidomics using a functional genetics screening platform.
使用功能遗传学筛选平台进行高通量、靶向 MHC I 类免疫肽组学。
9.Transcriptome-wide profiling and quantification of N6-methyladenosine by enzyme-assisted adenosine deamination.
通过酶辅助腺苷脱氨对 N6-甲基腺苷进行全转录组分析和定量。
10.A spatial genome aligner for resolving chromatin architectures from multiplexed DNA FISH.
用于从多重 DNA FISH 中解析染色质结构的空间基因组比对仪。
11.Dynamic, adaptive sampling during nanopore sequencing using Bayesian experimental design.
使用贝叶斯实验设计在纳米孔测序过程中动态、自适应采样。
===================================
1.Nanopores. Artist’s impression of a protein translocating through a nanopore. Yu et al. identify conditions that allow complete proteins to translocate through a nanopore when driven by an electroosm.
纳米孔。艺术家对蛋白质通过纳米孔移位的印象。于等人确定在电渗驱动下允许完整蛋白质通过纳米孔移位的条件。

2.Programmable A-to-Y base editing by fusing an adenine base editor with an N-methylpurine DNA glycosylase.
通过将腺嘌呤碱基编辑器与 N-甲基嘌呤 DNA 糖基化酶融合进行可编程 A 到 Y 碱基编辑。
3.Solid-phase capture and profiling of open chromatin by spatial ATAC.
通过空间 ATAC 对开放染色质进行固相捕获和分析。
4.Engineered live bacteria suppress Pseudomonas aeruginosa infection in mouse lung and dissolve endotracheal-tube biofilms.
工程活细菌可抑制小鼠肺部的铜绿假单胞菌感染并溶解气管内管生物膜。
5.Large language models generate functional protein sequences across diverse families.
大型语言模型生成跨不同家族的功能蛋白质序列。
6.RNA recording in single bacterial cells using reprogrammed tracrRNAs.
使用重新编程的 tracrRNA 在单个细菌细胞中记录 RNA。
7.A universal deep-learning model for zinc finger design enables transcription factor reprogramming.
用于锌指设计的通用深度学习模型可以实现转录因子重编程。
8.Unidirectional single-file transport of full-length proteins through a nanopore.
通过纳米孔单向单列传输全长蛋白质。
9.Cell-type-specific prediction of 3D chromatin organization enables high-throughput in silico genetic screening.
3D 染色质组织的细胞类型特异性预测可实现计算机基因筛查的高通量。
10.Predicting prime editing efficiency and product purity by deep learning.
通过深度学习预测主要编辑效率和产品纯度。
11.Real-time, volumetric imaging of radiation dose delivery deep into the liver during cancer treatment.
在癌症治疗过程中,对肝脏深处的辐射剂量进行实时体积成像。