欢迎光临散文网 会员登陆 & 注册

[Calculus] Bypassing Cyclic Integration by Parts

2021-09-19 12:36 作者:AoiSTZ23  | 我要投稿

By: Tao Steven Zheng (郑涛)

【Problem】

Use the integral

%5Cint%20%7Be%7D%5E%7B(a%2Bib)x%7D%20dx%20%3D%20%5Cfrac%7B%7Be%7D%5E%7B(a%2Bib)x%7D%7D%7Ba%2Bib%7D

to compute %5Cint%20%7Be%7D%5E%7Bax%7D%5Csin(bx)%20dx and %5Cint%20%7Be%7D%5E%7Bax%7D%5Ccos(bx)%20dx%20 simultaneously.

【Solution】

Since %20%7Be%7D%5E%7B(a%2Bib)x%7D%20%3D%20%7Be%7D%5E%7Bax%7D%20%5B%5Ccos(bx)%20%2B%20%20i%5Csin(bx)%5D,


%5Cint%20%7Be%7D%5E%7Bax%7D%20%5B%5Ccos(bx)%20%2B%20%20i%5Csin(bx)%5D%20dx%20%3D%20%5Cfrac%7B%7Be%7D%5E%7B(a%2Bib)x%7D%7D%7Ba%2Bib%7D

%5Cint%20e%5E%7Bax%7D%5Ccos(bx)dx%20%2B%20%20i%20%5Cint%20e%5E%7Bax%7D%5Csin(bx)%20dx%20%3D%20%5Cfrac%7B%7Be%7D%5E%7Bax%7D%20%5B%5Ccos(bx)%20%2B%20%20i%5Csin(bx)%5D%7D%7Ba%2Bib%7D


Multiply the numerator and denominator by the complex conjugate on the right hand side.

%5Cbegin%7Balign%7D%0A%5Cint%20e%5E%7Bax%7D%5Ccos(bx)dx%20%2B%20%20i%20%5Cint%20e%5E%7Bax%7D%5Csin(bx)%20dx%20%26%3D%20%5Cfrac%7B%7Be%7D%5E%7Bax%7D%20%5B%5Ccos(bx)%20%2B%20%20i%5Csin(bx)%5D(a-ib)%7D%7B(a%2Bib)(a-ib)%7D%5C%5C%0A%26%3D%20%5Cfrac%7B%7Be%7D%5E%7Bax%7D%7D%7Ba%5E2%20%2B%20b%5E2%7D%20%5Ba%5Ccos(bx)%20%2B%20%20ia%5Csin(bx)-ib%5Ccos(bx)%20%2B%20b%5Csin(bx)%5D%5C%5C%0A%5Cend%7Balign%7D

By matching real terms and complex terms, and tacking on the arbitrary constant from integrating, we can conclude that

%5Cint%20%7Be%7D%5E%7Bax%7D%5Csin(bx)%20dx%20%3D%20%5Cfrac%7B%7Be%7D%5E%7Bax%7D%20%5Ba%5Csin(bx)%20-%20%20b%5Ccos(bx)%5D%7D%7Ba%5E2%20%2B%20b%5E2%7D%0A%20%2B%20C

and
%5Cint%20%7Be%7D%5E%7Bax%7D%5Ccos(bx)%20dx%20%3D%20%5Cfrac%7B%7Be%7D%5E%7Bax%7D%20%5Ba%5Ccos(bx)%20%2B%20%20b%5Csin(bx)%5D%7D%7Ba%5E2%20%2B%20b%5E2%7D%0A%20%2B%20C%20


[Calculus] Bypassing Cyclic Integration by Parts的评论 (共 条)

分享到微博请遵守国家法律