如何控制原边振铃

简介
反激电源是最常用的拓扑之一。其变压器漏感常会引起原边振铃,并导致会损坏 MOSFET 的电压尖峰。因此,通过变压器和MOSFET 组件的合理设计来控制振铃非常重要。针对如何降低漏感,MPS 引入了一种 RCD 钳位电路设计策略,下面我们将对此进行详细地描述。
RCD 钳位电路设计
在反激电路中,一旦 MOSFET 管关断,变压器就会将原边的能量传输到副边,但漏感能量却无法被转移,这会导致电路中的杂散电容产生振铃。漏感是产生振铃的根本原因,它占总电感量的 1% 至 5%,但却无法完全消除。不过,我们可以通过特殊的绕线方法来降低漏感。
图 1 显示的三明治绕线法(夹心绕线法)是降低漏感的一种传统方法。与制作三明治的过程类似,原边绕组(NP)被一分为二,然后将副边绕组(NS)依次缠绕在一半的NP、辅助绕组和剩下的一半NP上。

图2显示了MOSFET关断后的逆变电路,此时MOSFET两端的电压由三部分组成:最大输入电压(VINMAX)、副边折射电压(VOR = n x VO)和振铃产生的峰值电压(VSPIKE)。 在输入输出电压、匝数比(n)和MOSFET选定的情况下,应尽可能抑制VSPIKE,以确保MOSFET工作在应力范围之内。工程师通常会选择 RCD 钳位电路来抑制振铃,因为它设计简单、成本低廉并且能够有效抑制电压尖峰。

正确选择 RCD 钳位电路至关重要,因为不理想的电阻和电容值会增加 MOSFET 的应力或电路功耗。 图 3 显示出,当 MOSFET 导通时,能量存储在励磁电感 (LM) 和漏电感 (LS) 中;当 MOSFET 关断时,LM 中的能量被转移到副边,但漏感能量不会转移。漏感会被释放以导通D1,并为 C1充电。一旦充电电压达到 VCLAMP,则D1 关断,C1 通过R1放电。
继续阅读 >>>请复制下方链接进入MPS官网查看:
https://bit.ly/3eRcQAZ