一般来说,一阶段模型在计算效率上有优势,两阶段在检测精度上有优势。对于一阶段和二阶段模型在速度上和精度上的差异,一般有以下原因:
1. 多数一阶段模型是利用预设的锚框(Anchor Box)来捕捉图像可能存在物体的区域,图像中包含物体的框远少于总共的锚框,因而在训练分类器时正负样本数目极不平衡,这会导致分类器训练的效果不好。
2. 二阶段模型在会修正候选框的位置,带来更高的定位精度,同时也增加了模型复杂度。