欢迎光临散文网 会员登陆 & 注册

利用同构思想求切点弦方程(2021全国乙圆锥曲线)

2022-08-06 19:16 作者:数学老顽童  | 我要投稿

(2021全国乙,21)已知抛物线Cx%5E2%3D2pyp%3E0)的焦点为F,且F与圆Mx%5E2%2B%5Cleft(%20y%2B4%20%5Cright)%20%5E2%3D1上点的距离的最小值为4.

(1)求p

(2)若点PM上,PAPBC的两条切线,AB是切点,求%5Cbigtriangleup%20PAB面积的最大值.

解:(1)易知%5Cleft%7C%20FM%20%5Cright%7C-1%3D4

%5Cfrac%7Bp%7D%7B2%7D%2B4-1%3D4

解得p%3D2.

(2)由(1)知C的方程为x%5E2%3D4y

y%3D%5Cfrac%7B1%7D%7B4%7Dx%5E2,(画个图)

求导得y'%3D%5Cfrac%7B1%7D%7B2%7Dx

A%5Cleft(%20x_1%2Cy_1%20%5Cright)%20B%5Cleft(%20x_2%2Cy_2%20%5Cright)%20P%5Cleft(%20m%2Cn%20%5Cright)%20

A处的切线斜率为%5Cfrac%7B1%7D%7B2%7Dx_1

所以A处的切线方程为

y-y_1%3D%5Cfrac%7B1%7D%7B2%7Dx_1%5Cleft(%20x-x_1%20%5Cright)%20.

因为该切线过点P

所以n-y_1%3D%5Cfrac%7B1%7D%7B2%7Dx_1%5Cleft(%20m-x_1%20%5Cright)%20

n-y_1%3D%5Cfrac%7B1%7D%7B2%7Dmx_1-%5Cfrac%7B1%7D%7B2%7Dx_%7B1%7D%5E%7B2%7D

n-y_1%3D%5Cfrac%7B1%7D%7B2%7Dmx_1-%5Cfrac%7B1%7D%7B2%7D%5Ccdot%204y_1

%5Ccolor%7Bred%7D%7By_1%7D%3D%5Cfrac%7Bm%7D%7B2%7D%5Ccdot%20%5Ccolor%7Bred%7D%7Bx_1%7D-n.


同理可得%5Ccolor%7Bred%7D%7By_2%7D%3D%5Cfrac%7Bm%7D%7B2%7D%5Ccdot%20%5Ccolor%7Bred%7D%7Bx_2%7D-n

可知AB都在直线%5Ccolor%7Bred%7D%7By%7D%3D%5Cfrac%7Bm%7D%7B2%7D%5Ccdot%20%5Ccolor%7Bred%7D%7Bx%7D-n上,

所以直线AB的方程即为%5Ccolor%7Bred%7D%7By%7D%3D%5Cfrac%7Bm%7D%7B2%7D%5Ccdot%20%5Ccolor%7Bred%7D%7Bx%7D-n.

在该方程中,令x%3Dm

可得y%3D%5Cfrac%7B1%7D%7B2%7Dm%5E2-n

所以%5Cbigtriangleup%20PAB铅垂高

%5Cleft%7C%20PN%20%5Cright%7C%3D%5Cfrac%7B1%7D%7B2%7Dm%5E2-n-n%3D%5Cfrac%7B1%7D%7B2%7Dm%5E2-2n.

联立直线AB与抛物线C,得

x%5E2-2mx-4n%3D0

所以x_1%2Bx_2%3D2mx_1x_2%3D4n

所以所以%5Cbigtriangleup%20PAB水平宽

%5Cbegin%7Baligned%7D%0A%09%5Cleft%7C%20x_1-x_2%20%5Cright%7C%26%3D%5Csqrt%7B%5Cleft(%20x_1%2Bx_2%20%5Cright)%20%5E2-4x_1x_2%7D%5C%5C%0A%09%26%3D%5Csqrt%7B%5Cleft(%202m%20%5Cright)%20%5E2-4%5Ccdot%204n%7D%5C%5C%0A%09%26%3D2%5Csqrt%7Bm%5E2-4n%7D%5C%5C%0A%5Cend%7Baligned%7D

所以

%5Cbegin%7Baligned%7D%0A%09S_%7B%5Cbigtriangleup%20PAB%7D%26%3D%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cleft(%20%5Cfrac%7B1%7D%7B2%7Dm%5E2-2n%20%5Cright)%20%5Ccdot%202%5Csqrt%7Bm%5E2-4n%7D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Csqrt%7B%5Cleft(%20m%5E2-4n%20%5Cright)%20%5E3%7D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Csqrt%7B%5Cleft%5B%201-%5Cleft(%20n%2B4%20%5Cright)%20%5E2-4n%20%5Cright%5D%20%5E3%7D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7B2%7D%5Csqrt%7B-%5Cleft(%20n%5E2%2B12n%2B15%20%5Cright)%20%5E3%7D%5C%5C%0A%5Cend%7Baligned%7D

S_%7B%5Cbigtriangleup%20PAB%7D%3Df%5Cleft(%20n%20%5Cright)%20%3D%5Cfrac%7B1%7D%7B2%7D%5Csqrt%7B-%5Cleft(%20n%5E2%2B12n%2B15%20%5Cright)%20%5E3%7D

其中n%5Cin%20%5Cleft%5B%20-5%2C-3%20%5Cright%5D%20

易知f%5Cleft(%20n%20%5Cright)%20%5Csearrow%20,所以

%5Cleft(%20S_%7B%5Cbigtriangleup%20PAB%7D%20%5Cright)%20_%7B%5Cmax%7D%3Df%5Cleft(%20n%20%5Cright)%20_%7B%5Cmax%7D%3Df%5Cleft(%20-5%20%5Cright)%20%3D20%5Csqrt%7B5%7D.


利用同构思想求切点弦方程(2021全国乙圆锥曲线)的评论 (共 条)

分享到微博请遵守国家法律