数据分析从零开始实战 (三)

零、写在前面
前面两篇文章基础篇(一)和基础篇(二)讲了数据分析虚拟环境创建和pandas读写csv、tsv、json格式的数据,今天我们继续探索pandas读取数据。
本系列学习笔记参考书籍:《数据分析实战》托马兹·卓巴斯
一、基本知识概要
1.利用pandas读写Excel文件
2.利用pandas读写XML文件
二、开始动手动脑
1.利用Python读写Excel
读取,利用Pandas库的ExcelFile()方法。
写入,利用
代码

读取结果:

写入结果:

可能报错:

解决方法:

2.利用Python读写XML文件
学过java的同学对XML应该不陌生,全称是eXtensible Markup Language(扩展标记语言),虽然平时不常见,但是Web API里支持XML编码。
读写代码


运行结果


代码解析
(1)read_xml(xml_FileName)函数
功能:读入XML数据,返回pa.DataFrame
这里利用到了一个轻量级的XML解析器:xml.etree.ElementTree。传入文件名,先读取文件内容,然后利用parse()函数解析XML,创建一个树状结构并存放在tree变量中,在tree对象上调用getroot()方法得到根节点,最后调用iter_records()函数,传入根节点,进而将返回的信息转换成DataFrame。
(2)iter_records(records)函数
功能:遍历有记录的生成器
iter_records()方法是一个生成器,从关键字yield
可以看出来,如果你不了解生成器,可以点击这里,与return不同,生成器每次只向主调方法返回一个值,直到结束。
(3)write_xml(xmlFile, data)函数
功能:以XML格式保存数据
这里需要注意的是得按XML文件格式进行保存,我们要做的就是三步:保存头部格式、按格式保存数据、保存尾部格式。保存数据时用到了DataFrame对象的apply()方法,遍历内部每一行,第一个参数xml_encode指定了要应用到每一行记录上的方法,axis=1表示按行处理,默认值为0,表示按列处理。
(4)xml_encode(row)函数
功能:以特定的嵌套格式将每一行编码成XML
在写数据的过程我们会调用这个方法,对每行数据进行处理,变成XML格式。
end.
作者:老表的第一个一百万.

扫描下方二维码报名参加课程
