欢迎光临散文网 会员登陆 & 注册

悬链线与双曲函数、反双曲函数(2)

2022-02-10 10:30 作者:匆匆-cc  | 我要投稿

        我们来认识一下前文中部分奇奇怪怪的新符号。

        认识双曲函数,我们从一个熟悉的角度。

f(x)%3D%5Cfrac%7Be%5Ex-e%5E%7B-x%7D%7D%7B2%7D

g(x)%3D%5Cfrac%7Be%5Ex%2Be%5E%7B-x%7D%7D%7B2%7D

h(x)%3D%5Cfrac%7Be%5Ex-e%5E%7B-x%7D%7D%7Be%5Ex%2Be%5E%7B-x%7D%7D

        容易证明,f(x)为奇函数,g(x)为偶函数函数,h(x)为奇函数。

        其实,这三个函数分别为双曲正弦函数双曲余弦函数双曲正切函数

        分别记作

f(x)%3D%5Csinh%20x%3D%5Cfrac%7Be%5Ex-e%5E%7B-x%7D%7D%7B2%7D

g(x)%3D%5Ccosh%20x%3D%5Cfrac%7Be%5Ex%2Be%5E%7B-x%7D%7D%7B2%7D

h(x)%3D%5Ctanh%20x%3D%5Cfrac%7Be%5Ex-e%5E%7B-x%7D%7D%7Be%5Ex%2Be%5E%7B-x%7D%7D

        所以,这些名称是怎么来的?

        首先有一个恒等式:

%5Cbegin%7Balign%7D%0A%5Ccosh%5E2%20x-%5Csinh%5E2%20x%26%3D%5Cleft(%5Cfrac%7Be%5Ex%2Be%5E%7B-x%7D%7D%7B2%7D%5Cright)%5E2-%5Cleft(%5Cfrac%7Be%5Ex-e%5E%7B-x%7D%7D%7B2%7D%5Cright)%5E2%0A%5C%5C%26%3D%5Cleft(%5Cfrac%7Be%5Ex%2Be%5E%7B-x%7D%7D%7B2%7D%2B%5Cfrac%7Be%5Ex-e%5E%7B-x%7D%7D%7B2%7D%5Cright)%5Ccdot%5Cleft(%5Cfrac%7Be%5Ex%2Be%5E%7B-x%7D%7D%7B2%7D-%5Cfrac%7Be%5Ex-e%5E%7B-x%7D%7D%7B2%7D%5Cright)%0A%5C%5C%26%3De%5Ex%5Ccdot%20e%5E%7B-x%7D%0A%5C%5C%26%3D1%0A%5Cend%7Balign%7D

%5Ccolor%7Bgray%7D%7B%5Csin%5E2x%2B%5Ccos%5E2x%3D1%7D

        似乎有某些相似之处。

        同样,我们发现

%5Ctanh%20x%3D%5Cfrac%7B%5Csinh%20x%7D%7B%5Ccosh%20x%7D

%5Ccolor%7Bgray%7D%7B%5Ctan%20x%3D%5Cfrac%7B%5Csin%20x%7D%7B%5Ccos%20x%7D%7D

        事实上,我们可以定义

%5Csinh%20x%3D-i%5Csin%20ix

%5Ccosh%20x%3D%5Ccos%20ix

    ## 注意:该定义非常重要,因为计算起来会比较简便。

        这个定义从何而来?笔者猜想来自欧拉公式

e%5E%7Bi%5Ctheta%7D%3D%5Ccos%20%5Ctheta%2Bi%5Csin%20%5Ctheta

        令

%5Ctheta%3D-ix

        我们得到

e%5Ex%3D%5Ccos(-ix)%2Bi%5Csin(-ix)%3D%5Ccos%20ix-i%5Csin%20ix%3D%5Ccosh%20x%2B%5Csinh%20x

        原来,双曲正弦和双曲余弦不过是e指数函数的两部分。

        当然,根据双曲正弦和双曲余弦的新定义,我们也就有

%5Ctanh%20x%3D%5Cfrac%7B%5Csinh%20x%7D%7B%5Ccosh%20x%7D%3D%5Cfrac%7B-i%5Csin%20ix%7D%7B%5Ccos%20ix%7D%3D-i%5Ctan%20ix

        代入恒等式,会发现

%5Cbegin%7Balign%7D%0A%5Ccosh%5E2%20x-%5Csinh%5E2%20x%26%3D(%5Ccos%20ix)%5E2-(-i%5Csin%20ix)%5E2%0A%5C%5C%26%3D%5Ccos%5E2ix%2B%5Csin%5E2ix%0A%5C%5C%26%3D1%0A%5Cend%7Balign%7D

        至于“双曲”之名,则是来自于双曲线

        考察参数方程

%5Cbegin%7Bcases%7D%0Ax%3Da%5Ccosh%20t%5C%5C%0Ay%3Db%5Csinh%20t%0A%5Cend%7Bcases%7D

        我们就会发现

%5Cfrac%7Bx%5E2%7D%7Ba%5E2%7D-%5Cfrac%7By%5E2%7D%7Bb%5E2%7D%3D%5Ccosh%5E2x-%5Csinh%5E2x%3D1

        是一组双曲线。

        我们研究双曲函数的导数。

(%5Csinh%20x)'%3D(-i%5Csin%20ix)'%3D-i%5Ccdot%20i%5Ccos%20ix%3D%5Ccos%20ix%3D%5Ccosh%20x

(%5Ccosh%20x)'%3D(%5Ccos%20ix)'%3Di%5Ccdot%20(-%5Csin%20ix)%3D-i%5Csin%20ix%3D%5Csinh%20x

    ## 注意:和三角函数不同,这里没有负号。

        限于篇幅与繁复的计算,下面不加证明地给出剩余几个双曲函数的定义及诸多恒等式。

%5Ccoth%20x%3D%5Cfrac%7Be%5Ex%2Be%5E%7B-x%7D%7D%7Be%5Ex-e%5E%7B-x%7D%7D%3Di%5Ccot%20ix

%5Coperatorname%7Bsech%7D%20x%3D%5Cfrac%7B2%7D%7Be%5Ex%2Be%5E%7B-x%7D%7D%3D%5Csec%20ix

%5Coperatorname%7Bcsch%7Dx%3D%5Cfrac%7B2%7D%7Be%5Ex-e%5E%7B-x%7D%7D%3Di%5Ccsc%20ix

1-%5Ctanh%5E2x%3D%5Cfrac%7B1%7D%7B%5Ccosh%5E2%20x%7D

%5Ccolor%7Bgray%7D%7B1%2B%5Ctan%5E2x%3D%5Cfrac%7B1%7D%7B%5Ccos%5E2x%7D%7D

(%5Ctanh%20x)'%3D%5Cfrac%7B1%7D%7B%5Ccosh%5E2x%7D

%5Ccolor%7Bgray%7D%7B(%5Ctan%20x)'%3D%5Cfrac%7B1%7D%7B%5Ccos%5E2x%7D%7D

(%5Ccoth%20x)'%3D-%5Cfrac%7B1%7D%7B%5Csinh%5E2x%7D

%5Ccolor%7Bgray%7D%7B(%5Ccot%20x)'%3D-%5Cfrac%7B1%7D%7B%5Csin%5E2x%7D%7D

(%5Coperatorname%7Bsech%7Dx)'%3D-%5Cfrac%7B%5Csinh%20x%7D%7B%5Ccosh%5E2%20x%7D

%5Ccolor%7Bgray%7D%7B(%5Coperatorname%7Bsec%7Dx)'%3D%5Cfrac%7B%5Csin%20x%7D%7B%5Ccos%5E2%20x%7D%7D

(%5Coperatorname%7Bcsch%7Dx)'%3D-%5Cfrac%7B%5Ccosh%20x%7D%7B%5Csinh%5E2x%7D

%5Ccolor%7Bgray%7D%7B(%5Coperatorname%7Bcsc%7Dx)'%3D-%5Cfrac%7B%5Ccos%20x%7D%7B%5Csin%5E2x%7D%7D

    ## 不熟悉三角函数的导数的可以参看以下链接。

%5Csinh%20(x%5Cpm%20y)%3D%5Csinh%20x%5Ccosh%20y%5Cpm%20%5Ccosh%20x%5Csinh%20y

%5Ccolor%7Bgray%7D%7B%5Csin%20(x%5Cpm%20y)%3D%5Csin%20x%5Ccos%20y%5Cpm%20%5Ccos%20x%5Csin%20y%7D

%5Ccosh%20(x%5Cpm%20y)%3D%5Ccosh%20x%5Ccosh%20y%5Cpm%20%5Csinh%20x%5Csinh%20y

%5Ccolor%7Bgray%7D%7B%5Ccos%20(x%5Cpm%20y)%3D%5Ccos%20x%5Ccos%20y%5Cmp%20%5Csin%20x%5Csin%20y%7D

%5Ctanh(x%5Cpm%20y)%3D%5Cfrac%7B%5Ctanh%20x%5Cpm%5Ctanh%20y%7D%7B1%5Cpm%5Ctanh%20x%5Ctanh%20y%7D

%5Ccolor%7Bgray%7D%7B%5Ctan(x%5Cpm%20y)%3D%5Cfrac%7B%5Ctan%20x%5Cpm%5Ctan%20y%7D%7B1%5Cmp%5Ctan%20x%5Ctan%20y%7D%7D

%5Csinh%202x%3D2%5Csinh%20x%5Ccosh%20x%3D%5Cfrac%7B2%5Ctanh%20x%7D%7B1-%5Ctanh%5E2x%7D

%5Ccolor%7Bgray%7D%7B%5Csin%202x%3D2%5Csin%20x%5Ccos%20x%3D%5Cfrac%7B2%5Ctan%20x%7D%7B1%2B%5Ctan%5E2x%7D%7D

%5Ccosh%202x%3D%5Ccosh%5E2x%2B%5Csinh%5E2x%3D2%5Ccosh%5E2x-1%3D1%2B2%5Csinh%5E2x%3D%5Cfrac%7B1%2B%5Ctanh%5E2x%7D%7B1-%5Ctanh%5E2x%7D

%5Ccolor%7Bgray%7D%7B%5Ccos%202x%3D%5Ccos%5E2x-%5Csin%5E2x%3D2%5Ccos%5E2x-1%3D1%2B2%5Csin%5E2x%3D%5Cfrac%7B1-%5Ctan%5E2x%7D%7B1%2B%5Ctan%5E2x%7D%7D

%5Ctanh%202x%3D%5Cfrac%7B2%5Ctanh%20x%7D%7B1%2B%5Ctanh%5E2x%7D

%5Ccolor%7Bgray%7D%7B%5Ctan%202x%3D%5Cfrac%7B2%5Ctan%20x%7D%7B1-%5Ctan%5E2x%7D%7D

%5Csinh%20x%2B%5Csinh%20y%3D2%5Csinh%5Cfrac%7Bx%2By%7D%7B2%7D%5Ccosh%5Cfrac%7Bx-y%7D%7B2%7D

%5Ccolor%7Bgray%7D%7B%5Csin%20x%2B%5Csin%20y%3D2%5Csin%5Cfrac%7Bx%2By%7D%7B2%7D%5Ccos%5Cfrac%7Bx-y%7D%7B2%7D%7D

%5Ccosh%20x%2B%5Ccosh%20y%3D2%5Ccosh%5Cfrac%7Bx%2By%7D%7B2%7D%5Ccosh%5Cfrac%7Bx-y%7D%7B2%7D

%5Ccolor%7Bgray%7D%7B%5Ccos%20x%2B%5Ccos%20y%3D2%5Ccos%5Cfrac%7Bx%2By%7D%7B2%7D%5Ccos%5Cfrac%7Bx-y%7D%7B2%7D%7D

%5Csinh%20x-%5Csinh%20y%3D2%5Ccosh%5Cfrac%7Bx%2By%7D%7B2%7D%5Csinh%5Cfrac%7Bx-y%7D%7B2%7D

%5Ccolor%7Bgray%7D%7B%5Csin%20x-%5Csin%20y%3D2%5Ccos%5Cfrac%7Bx%2By%7D%7B2%7D%5Csin%5Cfrac%7Bx-y%7D%7B2%7D%7D

%5Ccosh%20x-%5Ccosh%20y%3D2%5Csinh%5Cfrac%7Bx%2By%7D%7B2%7D%5Csinh%5Cfrac%7Bx-y%7D%7B2%7D

%5Ccolor%7Bgray%7D%7B%5Ccos%20x-%5Ccos%20y%3D-2%5Csin%5Cfrac%7Bx%2By%7D%7B2%7D%5Csin%5Cfrac%7Bx-y%7D%7B2%7D%7D

%5Csinh%20x%5Ccosh%20y%3D%5Cfrac%7B1%7D%7B2%7D%5B%5Csinh(x%2By)%2B%5Csinh(x-y)%5D

%5Ccolor%7Bgray%7D%7B%5Csin%20x%5Ccos%20y%3D%5Cfrac%7B1%7D%7B2%7D%5B%5Csin(x%2By)%2B%5Csin(x-y)%5D%7D

%5Ccosh%20x%5Csinh%20y%3D%5Cfrac%7B1%7D%7B2%7D%5B%5Csinh(x%2By)-%5Csinh(x-y)%5D

%5Ccolor%7Bgray%7D%7B%5Ccos%20x%5Csin%20y%3D%5Cfrac%7B1%7D%7B2%7D%5B%5Csin(x%2By)-%5Csin(x-y)%5D%7D

%5Ccosh%20x%5Ccosh%20y%3D%5Cfrac%7B1%7D%7B2%7D%5B%5Ccosh(x%2By)%2B%5Ccosh(x-y)%5D

%5Ccolor%7Bgray%7D%7B%5Ccos%20x%5Ccos%20y%3D%5Cfrac%7B1%7D%7B2%7D%5B%5Ccos(x%2By)%2B%5Ccos(x-y)%5D%7D

%5Csinh%20x%5Csinh%20y%3D%5Cfrac%7B1%7D%7B2%7D%5B%5Ccosh(x%2By)-%5Ccosh(x-y)%5D

%5Ccolor%7Bgray%7D%7B%5Csin%20x%5Csin%20y%3D-%5Cfrac%7B1%7D%7B2%7D%5B%5Ccos(x%2By)-%5Ccos(x-y)%5D%7D

    ## 注意:以上有若干处正负号和三角函数不同。

%5Csinh%20x%3Dx%2B%5Cfrac%7Bx%5E3%7D%7B3!%7D%2B%5Cfrac%7Bx%5E5%7D%7B5!%7D%2B%E2%80%A6

%5Ccolor%7Bgray%7D%7B%5Csin%20x%3Dx-%5Cfrac%7Bx%5E3%7D%7B3!%7D%2B%5Cfrac%7Bx%5E5%7D%7B5!%7D%2B%E2%80%A6%7D

%5Ccosh%20x%3D1%2B%5Cfrac%7Bx%5E2%7D%7B2!%7D%2B%5Cfrac%7Bx%5E4%7D%7B4!%7D%2B%E2%80%A6

%5Ccolor%7Bgray%7D%7B%5Ccos%20x%3D1-%5Cfrac%7Bx%5E2%7D%7B2!%7D%2B%5Cfrac%7Bx%5E4%7D%7B4!%7D%2B%E2%80%A6%7D

    ## 这两个级数加起来就是%5Ccolor%7Bgray%7D%7Be%7D指数函数的泰勒展开。

(%5Ccosh%20x%2B%5Csinh%20x)%5En%3D%5Ccosh%20nx%2B%5Csinh%20nx

%5Ccolor%7Bgray%7D%7B(%5Ccos%20x%2Bi%5Csin%20x)%5En%3D%5Ccos%20nx%2Bi%5Csin%20nx%7D

    ## 棣莫弗公式

        双曲函数广泛应用于悬链线、四维空间的转动等地方。






悬链线与双曲函数、反双曲函数(2)的评论 (共 条)

分享到微博请遵守国家法律