欢迎光临散文网 会员登陆 & 注册

二维方晶格能带和态密度

2023-08-28 15:27 作者:syr56  | 我要投稿

二维方晶格

图1 二维方晶格

紧束缚近似下哈密顿量为

H%3D-t_1%5Csum_%7B%3C%5Ctextbf%7Bi%7D%5Ctextbf%7Bj%7D%3E%7D%20c_%5Ctextbf%7Bi%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bj%7D%7D-t_2%5Csum_%7B%3C%5Ctextbf%7Bi%7D%5Ctextbf%7Bj%7D%3E'%7D%20c_%5Ctextbf%7Bi%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bj%7D%7D-t_3%5Csum_%7B%3C%5Ctextbf%7Bi%7D%5Ctextbf%7Bj%7D%3E''%7D%20c_%5Ctextbf%7Bi%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bj%7D%7D%0A%5Ctag%7B1%7D

%3C%5Ctextbf%7Bij%7D%3E表示仅考虑电子与最近邻(NN,每个原子有4个最近邻原子)格点的跃迁,

最近邻格点间距为a_0%5Ctextbf%7Bl%7D_%5Ctextbf%7Bi%7D%3D%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%2B%5Ctextbf%7Ba%7D_%7B%5Cmathrm%7BNN%7D%7D%3D%5Cleft%5C%7B%5Carray%7B%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%5Cpm%20a_0%5Chat%7Bx%7D%20%5C%5C%20%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%5Cpm%20a_0%5Chat%7By%7D%7D%20%5Cright.

%3C%5Ctextbf%7Bij%7D%3E'表示仅考虑电子与次近邻(NNN,每个原子有4个次近邻原子)格点的跃迁,

次近邻格点间距为%5Csqrt%7B2%7Da_0%5Ctextbf%7Bl%7D_%5Ctextbf%7Bi%7D%3D%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%2B%5Ctextbf%7Ba%7D_%7B%5Cmathrm%7BNNN%7D%7D%3D%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%2B%20(%5Cpm%20a_0%5Chat%7Bx%7D%20%5Cpm%20a_0%5Chat%7By%7D)

%3C%5Ctextbf%7Bij%7D%3E''表示仅考虑电子与第三近邻(TNN,每个原子有4个第三近邻原子)格点的跃迁,第三近邻格点间距为2a_0%5Ctextbf%7Bl%7D_%5Ctextbf%7Bi%7D%3D%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%2B2%5Ctextbf%7Ba%7D_%7B%5Cmathrm%7BTNN%7D%7D%3D%5Cleft%5C%7B%5Carray%7B%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%5Cpm%202a_0%5Chat%7Bx%7D%20%5C%5C%20%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%5Cpm%202a_0%5Chat%7By%7D%7D%20%5Cright.

通过傅里叶变换可以得到动量空间中的哈密顿量为:

%5Cbegin%7Baligned%7D%20H(%5Ctextbf%7Bk%7D)%3D%5Csum_%7B%5Ctextbf%7Bk%7D%7D%5C%7B%26-2t_1%5B(%5Ccos(k_xa_0)%2B%5Ccos(k_ya_0)%5D%5C%5C%20%26-2t_2%5B%5Ccos(k_xa_0%2Bk_ya_0)%2B%5Ccos(k_xa_0-k_ya_0)%5D%20%20%5C%5C%20%26-2t_3%5B%5Ccos(2k_xa_0)%2B%5Ccos(2k_ya_0)%5D%5C%7D%20c_%7B%5Ctextbf%7Bk%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bk%7D%7D%20%5Cend%7Baligned%7D%0A%5Ctag%7B2%7D

能带函数为:

%5Cbegin%7Baligned%7D%20%5Cmathrm%7BNN%3A%7D%20%20%26%5Cquad%20E(%5Ctextbf%7Bk%7D)%3D-2t_1%5B%5Ccos(k_xa_0)%2B%5Ccos%7Bk_ya_0%7D%5D%20%5C%5C%20%5Cmathrm%7BNNN%3A%7D%20%26%5Cquad%20E(%5Ctextbf%7Bk%7D)%3D-2t_1%5B%5Ccos(k_xa_0)%2B%5Ccos%7Bk_ya_0%7D%5D-2t_2%5B%5Ccos(k_xa_0%2Bk_ya_0)%2B%5Ccos(k_xa_0-k_ya_0)%5D%20%20%5C%5C%20%5Cmathrm%7BTNN%3A%7D%20%26%5Cquad%20E(%5Ctextbf%7Bk%7D)%3D-2t_1%5B%5Ccos(k_xa_0)%2B%5Ccos%7Bk_ya_0%7D%5D-2t_2%5B%5Ccos(k_xa_0%2Bk_ya_0)%2B%5Ccos(k_xa_0-k_ya_0)%5D%20-2t_3%5B%5Ccos(2k_xa_0)%2B%5Ccos(2k_ya_0)%5D%20%20%5C%5C%20%5Cend%7Baligned%7D%0A%5Ctag%7B3%7D

态密度为:

%5Crho(%5Comega)%3D-%5Cfrac%7B1%7D%7BN%5Cpi%7D%5Cmathrm%7BIm%7D%20%5Csum_%7B%5Ctextbf%7Bk%7D%7D%5Cfrac%7B1%7D%7B%5Comega-E(%5Ctextbf%7Bk%7D)%2Bi%5CGamma%7D%3D-%5Cfrac%7B1%7D%7BN%5Cpi%7D%5Csum_%7B%5Ctextbf%7Bk%7D%7D%5Cfrac%7B%5CGamma%7D%7B%5B%5Comega-E(%5Ctextbf%7Bk%7D)%5D%5E2%2B%5CGamma%5E2%7D%0A%5Ctag%7B4%7D

a_0%3D1,第一布里渊区的范围为:

-%5Cpi%3Ck_x%3C%5Cpi%2C-%5Cpi%3Ck_y%3C%5Cpi%3B%5CDelta%20k_x%3D2%5Cpi%2C%5CDelta%20k_y%3D2%5Cpi%EF%BC%9B

得到三维能带和能带投影如下(t_1%3Dt_2%3Dt_3%3D1)

图2 三维能带:NN(左),NNN(中),TNN(右)
图3 三维能带投影:NN(左),NNN(中),TNN(右)

第一布里渊和费米面(E(%5Ctextbf%7Bk%7D)%3D0)图像如下

图4 第一布里渊区和费米面:NN(左),NNN(中),TNN(右)

沿高对称路径(%5CGamma-M-K-%5CGamma)的能带和态密度图像如下

图5 能带(左)和态密度(右)

附:

【哈密顿量的傅里叶变换过程】

傅里叶变换公式,参见《固体理论》--李正中

%5Cbegin%7Baligned%7D%0A%20%20%20%20%09c_%7Bnl%7D%26%3D%5Cfrac%7B1%7D%7B%5Csqrt%7BN%7D%7D%5Csum_%7Bk%5Cin%20BZ%7Dc_%7Bnk%7De%5E%7Bi%5Cvec%7Bk%7D%5Ccdot%5Cvec%7Bl%7D%7D%20%5Cqquad%20c_%7Bnk%7D%3D%5Cfrac%7B1%7D%7B%5Csqrt%7BN%7D%7D%5Csum_%7Bl%7Dc_%7Bnl%7De%5E%7B-i%5Cvec%7Bk%7D%5Ccdot%20%5Cvec%7Bl%7D%7D%20%20%5C%5C%0A%20%20%20%20%09c_%7Bnl%7D%5E%7B%5Cdagger%7D%26%3D%5Cfrac%7B1%7D%7B%5Csqrt%7BN%7D%7D%5Csum_%7Bk%5Cin%20BZ%7Dc_%7Bnk%7D%5E%7B%5Cdagger%7De%5E%7B-i%5Cvec%7Bk%7D%5Ccdot%5Cvec%7Bl%7D%7D%20%5Cqquad%20c_%7Bnk%7D%5E%7B%5Cdagger%7D%3D%5Cfrac%7B1%7D%7B%5Csqrt%7BN%7D%7D%5Csum_%7Bl%7Dc_%7Bnl%7D%5E%7B%5Cdagger%7De%5E%7Bi%5Cvec%7Bk%7D%5Ccdot%20%5Cvec%7Bl%7D%7D%20%5C%5C%0A%20%20%20%20%09~%5C%5C%0A%20%20%20%20%09%5Cfrac%7B1%7D%7BN%7D%26%5Csum_%7Bl%7De%5E%7B%5Cpm%20i(%5Cvec%7Bk%7D-%5Cvec%7Bk%7D')%5Ccdot%20%5Cvec%7Bl%7D%7D%20%3D%20%5Cdelta_%7Bkk'%7D%3B%20%5Cqquad%20%5Cfrac%7B1%7D%7BN%7D%5Csum_%7Bk%5Cin%20BZ%7De%5E%7B%5Cpm%20i%5Cvec%7Bk%7D%5Ccdot%20(%5Cvec%7Bl%7D-%5Cvec%7Bl%7D')%7D%3D%5Cdelta_%7Bll'%7D%0A%20%20%20%20%09%5Cend%7Baligned%7D%0A%5Ctag%7B5%7D

最近邻项的傅里叶变换

%5Cbegin%7Baligned%7D%0A-t_1%26%5Csum_%7B%3C%5Ctextbf%7Bi%7D%5Ctextbf%7Bj%7D%3E%7Dc_%5Ctextbf%7Bi%7D%5E%7B%5Cdagger%7Dc_%5Ctextbf%7Bj%7D%3D-%5Cfrac%7Bt_1%7D%7BN%7D%5Csum_%7B%3C%5Ctextbf%7Bij%7D%3E%2C%5Ctextbf%7Bkk%7D'%7Dc_%5Ctextbf%7Bk%7D%5E%7B%5Cdagger%7De%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot%20%5Ctextbf%7Bl%7D_%5Ctextbf%7Bi%7D%7Dc_%7B%5Ctextbf%7Bk%7D'%7De%5E%7Bi%5Ctextbf%7Bk%7D'%5Ccdot%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%7D%3D-%5Cfrac%7Bt_1%7D%7BN%7D%5Csum_%7B%5Ctextbf%7Bj%7D%2C%5Ctextbf%7Bkk%7D'%2C%5Ctextbf%7Ba%7D_%7B%5Cmathrm%7BNN%7D%7D%7Dc_%7B%5Ctextbf%7Bk%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bk%7D'%7De%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot(%5Ctextbf%7Bl%7D_%7B%5Ctextbf%7Bj%7D%7D%2B%5Ctextbf%7Ba%7D_%5Cmathrm%7BNN%7D)%7De%5E%7Bi%5Ctextbf%7Bk%7D'%5Ccdot%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%7D%20%20%5C%5C%0A%26%3D-%5Cfrac%7Bt_1%7D%7BN%7D%5Csum_%7B%5Ctextbf%7Bj%2Ckk'%7D%7Dc_%7B%5Ctextbf%7Bk%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bk%7D'%7De%5E%7Bi%5Ctextbf%7Bk%7D'%5Ccdot%5Ctextbf%7Bl%7D_j%7D%5Be%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot%20(%5Ctextbf%7Bl%7D_j%2Ba_0)%5Chat%7Bx%7D%7D%2Be%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot%20(%5Ctextbf%7Bl%7D_j-a_0)%5Chat%7Bx%7D%7D%2Be%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot%20(%5Ctextbf%7Bl%7D_j%2Ba_0)%5Chat%7By%7D%7D%2Be%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot%20(%5Ctextbf%7Bl%7D_j-a_0)%5Chat%7By%7D%7D%5D%20%20%5C%5C%0A%26%3D-t_1%5Csum_%7B%5Ctextbf%7Bk%7D%7Dc_%7B%5Ctextbf%7Bk%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bk%7D%7D%5Be%5E%7Bik_xa_0%7D%2Be%5E%7B-ik_xa_0%7D%2Be%5E%7Bik_ya_0%7D%2Be%5E%7B-ik_ya_0%7D%5D%20%20%5C%5C%0A%26%3D%5Csum_%7B%5Ctextbf%7Bk%7D%7D-2t_1%5B%5Ccos(k_xa_0)%2Bcos(k_ya_0)%5Dc_%7B%5Ctextbf%7Bk%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bk%7D%7D%0A%5Cend%7Baligned%7D%0A%5Ctag%7B6%7D

类似地,第三近邻项的傅里叶变换为

-t_3%5Csum_%7B%3C%5Ctextbf%7Bij%7D%3E''%7Dc_%7B%5Ctextbf%7Bi%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bj%7D%7D%3D%5Csum_%7B%5Ctextbf%7Bk%7D%7D-2t_3%5B%5Ccos(2k_xa_0)%2Bcos(2k_ya_0)%5Dc_%7B%5Ctextbf%7Bk%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bk%7D%7D%0A%5Ctag%7B7%7D

次近邻项的傅里叶变换为

%5Cbegin%7Baligned%7D%0A%26-t_2%5Csum_%7B%3C%5Ctextbf%7Bij%7D%3E'%7Dc_%7B%5Ctextbf%7Bi%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bj%7D%7D%3D-%5Cfrac%7Bt_2%7D%7BN%7D%5Csum_%7B%3C%5Ctextbf%7Bij%7D%3E'%5Ctextbf%7Bkk%7D'%7Dc_%7B%5Ctextbf%7Bk%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bk%7D'%7De%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot%5Ctextbf%7Bl%7D_%5Ctextbf%7Bi%7D%7De%5E%7Bi%5Ctextbf%7Bk%7D%5Ccdot%5Ctextbf%7Bl%7D_%5Ctextbf%7Bj%7D%7D%0A%3D-%5Cfrac%7Bt_2%7D%7BN%7D%5Csum_%7B%5Ctextbf%7Bj%7D%2C%5Ctextbf%7Bkk%7D'%2C%5Ctextbf%7Ba%7D_%7B%5Ctextbf%7BNNN%7D%7D%7Dc_%7B%5Ctextbf%7Bk%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bk%7D'%7De%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot(%5Ctextbf%7Bl%7D_j%2B%5Ctextbf%7Ba%7D_%7B%5Ctextbf%7BNNN%7D%7D)%7De%5E%7Bi%5Ctextbf%7Bk%7D%5Ccdot%5Ctextbf%7Bl%7D_%7B%5Ctextbf%7Bj%7D%7D%7D%20%20%20%5C%5C%5C%0A%26%3D-%5Cfrac%7Bt_2%7D%7BN%7D%5Csum_%7B%5Ctextbf%7Bj%7D%2C%5Ctextbf%7Bkk%7D'%7Dc_%7B%5Ctextbf%7Bk%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bk%7D'%7D%20e%5E%7B-i%5Ctextbf%7Bk%7D'%5Ccdot%5Ctextbf%7Bl%7D_%7Bj%7D%7D%5Be%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot(%5Ctextbf%7Bl%7D_%7Bj%7D%2Ba_0%5Chat%7Bx%7D%2Ba_0%5Chat%7By%7D)%7D%2Be%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot(%5Ctextbf%7Bl%7D_%7Bj%7D-a_0%5Chat%7Bx%7D%2Ba_0%5Chat%7By%7D)%7D%2Be%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot(%5Ctextbf%7Bl%7D_%7Bj%7D%2Ba_0%5Chat%7Bx%7D-a_0%5Chat%7By%7D)%7D%2Be%5E%7B-i%5Ctextbf%7Bk%7D%5Ccdot(%5Ctextbf%7Bl%7D_%7Bj%7D-a_0%5Chat%7Bx%7D-a_0%5Chat%7By%7D)%7D%5D%20%5C%5C%0A%26%3D-t_2%5Csum_%7B%5Ctextbf%7Bk%7D%7Dc_%7B%5Ctextbf%7Bk%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bk%7D%7D%5Be%5E%7B-i(k_xa_0%2Bk_ya_0)%7D%2Be%5E%7Bi(k_xa_0%2Bk_ya_0)%7D%2Be%5E%7B-i(k_xa_0-k_ya_0)%7D%2Be%5E%7Bi(k_xa_0-k_ya_0)%7D%5D%20%20%5C%5C%0A%26%3D%5Csum_%7B%5Ctextbf%7Bk%7D%7D-2t_2%5B%5Ccos(k_xa_0%2Bk_ya_0)%2B%5Ccos(k_xa_0-k_xa_0)%5Dc_%7B%5Ctextbf%7Bk%7D%7D%5E%7B%5Cdagger%7Dc_%7B%5Ctextbf%7Bk%7D%7D%0A%5Cend%7Baligned%7D%0A%5Ctag%7B8%7D

【代码】

能带、费米面图像绘制


态密度图像绘制

【英文缩写】

   NN:Nearest Neighbor,最近邻

NNN:Next Nearest Neighbor,次近邻

TNN:Third Nearest Neighbor,第三近邻


二维方晶格能带和态密度的评论 (共 条)

分享到微博请遵守国家法律