现代图论 纲要
前言:寒假计划读这本Modern graph theory, Bollobas (GTM184)。每天会发一部分提纲。今天的部分是1.1.1节 definitions。有过图论基础的朋友应该基本都知道。
一. 基础:
定义: (下汉语术语都由笔者捏造)
1. 图(graph)、顶点(vertice)、边(edge)、连接(join)、相邻(neighbouring)、由..产生(be incident with)、子图(subgraph)、由...张成(spanned by)、阶(order)、大小(size)、同构(isomophic)、完全图(complete n-graph)、补图(complement of)、开(闭)邻域((closed) neighbourhood)、度(degree)、行走(walk)、路(path)、迹(trail)、圈(circle)、连通分量(complement)、最大\小度、最大连通子图、r分图(r-partite graph)、超图(hypergraph)、超图的生成图(incidence graph)、混合图(multigrpah)。
几个术语的解释:
hypergraph: a pair (V,E) such that V∩E=∅ and E is a subset of P(V), the power set of V. 翻译下就是这图的边(超边)可以和任意个顶点连接。
incidence graph of hypergraph: a bipartite graph with vertex classes V and E in which x∈V is joined to a hyperedge S∈E iff x∈S.把各个超边看作顶点和其包含的顶点连接形成的二分图。
i.e.

3. 定理(学过离散数学应该都知道):
定理1. The edge set of a graph can be partiotioned into cycles iff every vertex has even degree.
定理2. Every graph of order n and size greater than ⌊n^2/4⌋ contains a triangle.(用柯西不等式证明)