欢迎光临散文网 会员登陆 & 注册

【种花家务·代数】1-4-04公式分解法『数理化自学丛书6677版』

2023-09-27 16:15 作者:山嵓  | 我要投稿

【阅前提示】本篇出自『数理化自学丛书6677版』,此版丛书是“数理化自学丛书编委会”于1963-1966年陆续出版,并于1977年正式再版的基础自学教材,本系列丛书共包含17本,层次大致相当于如今的初高中水平,其最大特点就是可用于“自学”。当然由于本书是大半个世纪前的教材,很多概念已经与如今迥异,因此不建议零基础学生直接拿来自学。不过这套丛书却很适合像我这样已接受过基础教育但却很不扎实的学酥重新自修以查漏补缺。另外,黑字是教材原文,彩字是我写的注解。

【山话嵓语】我在原有“自学丛书”系列17册的基础上又添加了1册八五人教中学甲种本《微积分初步》,原因有二:一则,我是双鱼座,有一定程度的偶双症,但“自学丛书”系列中代数4册、几何5册实在令我刺挠,因此就需要加入一本代数,使两边能够对偶平衡;二则,我认为《微积分初步》这本书对“准大学生”很重要,以我的惨痛教训为例,大一高数第一堂课,我是直接蒙圈,学了个寂寞。另外大学物理的前置条件是必须有基础微积分知识,因此我所读院校的大学物理课是推迟开课;而比较生猛的大学则是直接开课,然后在绪论课中猛灌基础高数(例如田光善舒幼生老师的力学课)。我选择在“自学丛书”17本的基础上添加这本《微积分初步》,就是希望小伙伴升大学前可以看看,不至于像我当年那样被高数打了个措手不及。

第四章因式分解 

§4-4公式分解法

1、平方差的因式分解公式

【01】在§4-1里我们曾经看到多项式 a²-b² 可以分解成两个因式,就是 a²-b²=(a+b)(a-b)……(1)  。

【02】事实上,这里我们是反过来应用了两数和与差的积的公式。

【03】我们可以把(1)作为一个公式,利用它来分解由一个数的平方减去另一个数的平方所构成的多项式的因式。平方差的因式分解公式

        a²-b²=(a+b)(a-b)(因式分解公式1)。

例1.分解因式:(1) a²-x²;(2) x²-y²  。

【分析】可以直接应用公式,只要把公式里的 a,b 用有关字母代进去就可以了,公式里的 a,在(1)内是 a;在(2)内是 x;公式里的 b,在(1)内是x,在(2)内是 y  。

【解】(1) a²-x²=(a+x)(a-x);(2) x²-y²=(x+y)(x-y)  。

例2.分解因式:(1) 4a²-9b²;(2) a⁴-4b⁴  。

【分析】4a²=(2a)²,9b²=(3b)²,以 2a 和 3b 替代公式里的 a 和 b 就可以了。

【解】

(1) 4a²-9b²=(2a)²-(3b)²=(2a+3b)(2a-3b)  。

(2) a⁴-4b⁴=(a²)²-(2b²)²=(a²+2b²)(a²-2b²)  。

例3.分解因式:(1)16a¹⁶-25b²x⁴;(2)36a⁴x¹º-9b⁶y⁸  。

【解】

(1)16a¹⁶-25b²x⁴=(4a⁸)²-(5bx²)²=(4a⁸+5bx²)(4a⁸-5bx²);

(2)36a⁴x¹º-9b⁶y⁸=(6a²x⁵)²-(3b³y⁴)²=(6a²x⁵+3b³y⁴)(6a²x⁵-3b³y⁴)  。

例4.分解因式:

%5Csmall%5Cbegin%7Baligned%7D%0A(1)%26%5C%3B(x-y)%5E2-z%5E2%3B%5C%5C%0A(2)%26%5C%3B4(x-y)%5E2-(a-b)%5E2%3B%5C%5C%0A(3)%26%5C%3B4(a%2Bb)%5E2-9(a-b)%5E2%3B%5C%5C%0A(4)%26%5C%3B(ax%2Bby)%5E2-1.%0A%5Cend%7Baligned%7D

【分析】这里每一个多项式都是平方差的形式,所以都可以利用上面的公式1  。例如,在(1)里,x-y 就相当于公式里的 a;在(2)里,2(x-y) 相当于公式里的 a;在(4)里,1 相当于公式里的 b  。

【解】

%5Csmall%5Cbegin%7Baligned%7D%0A%26(1)(x-y)%5E%7B2%7D-z%5E%7B2%7D%5C%5C%0A%26%3D%5Cleft%5B(x-y)%2Bz%5Cright%5D%5Cleft%5B(x-y)-z%5Cright%5D%20%5C%5C%0A%26%3D%5Cleft(x-y%2Bz%5Cright)%5Cleft(x-y-z%5Cright)%3B%20%5C%5C%0A%26(2)4(x-y)%5E%7B2%7D-(a-b)%5E%7B2%7D%5C%5C%0A%26%3D%5B2(x-y)%5D%5E%7B2%7D-(%5Cboldsymbol%7Ba%7D-b)%5E%7B2%7D%20%20%5C%5C%0A%26%3D%5Cleft%5B2(x-y)%2B(a-b)%5Cright%5D%5Cleft%5B2(x-y)-(a-b)%5Cright%5D%20%5C%5C%0A%26%3D%5Cleft(2x-2y%2Ba-b%5Cright)%5Cleft(2x-2y-a%2Bb%5Cright)%20%5C%5C%0A%26(3)4(a%2Bb)%5E%7B2%7D-9(a-b)%5E%7B2%7D%5C%5C%0A%26%3D%5B2(a%2Bb)%5D%5E%7B2%7D-%5B3(a-b)%5D%5E%7B2%7D%20%5C%5C%0A%26%3D2(a%2Bb)%2B3(a-b)2(a%2Bb)-3(a-b)%20%5C%5C%0A%26%3D(2a%2B2b%2B3a-3b)(2a%2B2b-3a%2B3b)%20%5C%5C%0A%26%3D(5a-b)%5Cleft(-a%2B5b%5Cright)%5C%5C%0A%26%3D(5a-b)%5Cleft(5b-a%5Cright)%3B%20%5C%5C%0A%26(4)(ax%2Bby)%5E%7B2%7D-1%5C%5C%0A%26%3D%5Cleft%5B(ax%2Bby)%2B1%5Cright%5D%5Cleft%5B(ax%2Bby)-1%5Cright%5D%20%5C%5C%0A%26%3D%5Cleft(ax%2Bby%2B1%5Cright)%5Cleft(ax%2Bby-1%5Cright).%0A%5Cend%7Baligned%7D

【注意】在第一步分解成因式时,不要省掉中括号,但以后要把这些括号内尽量化简,改用小括号。

习题4-4(1)

分解因式:

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81%20a%5E2-9b%5E2.%5C%5C%0A%262%E3%80%819x%5E2-4y%5E2.%5C%5C%0A%263%E3%80%81%20a%5E4-4b%5E2.%5C%5C%0A%264%E3%80%81a%5E6-b%5E8.%5C%5C%0A%265%E3%80%8116x%5E%7B16%7D-y%5E4z%5E6.%5C%5C%0A%266%E3%80%8125a%5E2b%5E4c%5E%7B16%7D-1.%5C%5C%0A%267%E3%80%811-4x%5E2y%5E6.%5C%5C%0A%268%E3%80%81(a%2Bb)%5E2-9.%5C%5C%0A%269%E3%80%81(2x-3y)%5E2-4a%5E2.%5C%5C%0A%2610%E3%80%81(a%2B2b)%5E2-(x-3y)%5E2.%5C%5C%0A%2611%E3%80%814(a%2B2b)%5E2-25(a-b)%5E2.%5C%5C%0A%2612%E3%80%81a%5E2(a%2B2b)%5E2-9(x%2By)%5E2.%5C%5C%0A%2613%E3%80%81b%5E%7B2%7D-(a-b%2Bc)%5E%7B2%7D.%5C%5C%0A%2614%E3%80%81(a%2Bb)%5E%7B2%7D-4a%5E%7B2%7D.%5C%5C%0A%2615%E3%80%81(x-y%2Bz)%5E2-(2x-3y%2B4z)%5E2.%5C%5C%0A%2616%E3%80%814(x%2By%2Bz)%5E2-9(x-y-z)%5E2.%0A%5Cend%7Baligned%7D

【答案】

%5Csmall%5Cbegin%7Baligned%7D%0A%269%E3%80%81(2x-3y%2B2a)(2x-3y-2a)%3B%20%5C%5C%0A%2610%E3%80%81(a%2B2b%2Bx-3y)(a%2B2b-x%2B3y)%3B%5C%5C%0A%2611%E3%80%813(7a-b)(3b-a)%20%5C%5C%0A%2612%E3%80%81(a%5E%7B2%7D%2B2ab%2B3x%2B3y)(a%5E%7B2%7D%2B2ab-3x-3y)%3B%5C%5C%0A%2613%E3%80%81(a%2Bc)(2b-a-c)%20%20%5C%5C%0A%0A%2614%E3%80%81(3a%2Bb)(b-a)%3B%5C%5C%0A%2615%E3%80%81(3x-4y%2B5z)(-x%2B2y-3z)%3B%20%5C%5C%0A%2616%E3%80%81(5x-y-z)(-x%2B5y%2B5z).%0A%5Cend%7Baligned%7D

例5.分解因式:(1) a⁴-b⁴;(2) a⁴-9b⁴;(3) a⁸-81b⁸;(4) a¹⁶-b¹⁶  。

【解】

(1) a⁴-b⁴=(a²)²-(b²)²=(a²+b²)(a²-b²)=(a²+b²)(a+b)(a-b)  。

【说明】a²-b² 还可以应用公式来分解,要继续分解到不能分解为止。但 a²+b² 不能再分解,就把这个因式照抄下来,不要漏掉。

(2) a⁴-9b⁴=(a²)²-(3b²)²=(a²+3b²)(a²-3b²)  。

【说明】a²-3b² 不能再分解了,因为 3 不能化成一个有理数的平方的形式。〖山注||  到无理数领域后可以继续分解为%5Ccolor%7Bblue%7D%7B%5Cscriptsize(a-%5Csqrt%7B3%7D%20b)(a%2B%5Csqrt%7B3%7D%20b)%7D

%5Csmall%5Cbegin%7Baligned%7D%0A%26%5Cleft(3%5Cright)%5C%3Ba%5E%7B8%7D-81b%5E%7B8%7D%5C%5C%0A%26%20%3D(%5Cboldsymbol%7Ba%7D%5E%7B4%7D)%5E%7B2%7D-(9b%5E%7B4%7D)%5E%7B2%7D%5C%5C%0A%26%3D(a%5E%7B4%7D%2B9b%5E%7B4%7D)(a%5E%7B4%7D-9b%5E%7B4%7D)%20%20%5C%5C%0A%26%3D(a%5E4%2B9b%5E4)(a%5E2)%5E2-(3b%5E2)%5E2%20%5C%5C%0A%26%3D(a%5E4%2B9b%5E4)%5Cleft%5B%5Cleft(a%5E2%2B3b%5E2%5Cright)%5Cleft(a%5E2-3b%5E2%5Cright)%5Cright%5D%20%5C%5C%0A%26%3D%5Cleft(a%5E4%2B9b%5E4%5Cright)%5Cleft(a%5E2%2B3b%5E2%5Cright)%5Cleft(a%5E2-3b%5E2%5Cright).%5C%5C%0A%26(4)%5C%3Ba%5E%7B16%7D-b%5E%7B16%7D%5C%5C%0A%26%20%3D(a%5E8)%5E2-(b%5E8)%5E2%5C%5C%0A%26%3D(a%5E8%2Bb%5E8)(a%5E8-b%5E8)%20%20%5C%5C%0A%26%3D(a%5E%7B8%7D%2Bb%5E%7B8%7D)%5Cleft%5B(a%5E%7B4%7D)%5E%7B2%7D-(b%5E%7B4%7D)%5E%7B2%7D%5Cright%5D%20%5C%5C%0A%26%3D(a%5E%7B8%7D%2Bb%5E%7B8%7D)(a%5E%7B4%7D%2Bb%5E%7B4%7D)(a%5E%7B4%7D-b%5E%7B4%7D)%20%5C%5C%0A%26%3D(a%5E8%2Bb%5E8)%5Cleft(a%5E4%2Bb%5E4%5Cright)%5Cleft%5B(a%5E2)%5E2-(b%5E2)%5E2%5Cright%5D%20%5C%5C%0A%26%3D%5Cleft(a%5E%5Ctext%7Bs%7D%2Bb%5E%5Ctextbf%7Bs%7D%5Cright)%5Cleft(a%5E4%2Bb%5E4%5Cright)%5Cleft(a%5E2%2Bb%5E2%5Cright)%5Cleft(a%5E2-b%5E2%5Cright)%20%5C%5C%0A%26%3D%5Cleft(a%5E8%2Bb%5E8%5Cright)%5Cleft(a%5E4%2Bb%5E4%5Cright)%5Cleft(a%5E2%2Bb%5E2%5Cright)%5Cleft(a%2Bb%5Cright)%5Cleft(a-b%5Cright).%0A%5Cend%7Baligned%7D

例6.分解因式:(1) a³-ab²;(2) a⁴-9a²b²;(3) a²-b²+a-b;(4) 5(a²-b²)-a+b  。

【解】

(1)先提出公因式 a,再应用平方差公式,得 a³-ab²=a(a²-b²)=a(a+b)(a-b)  。

(2)先提出公因式 a²,得 a⁴-9a²b²=a²(a²-9b²)=a²[a²-(3b)²]=a²(a+3b)(a-3b)  。

(3)分成两组,第一组应用平方差公式,再提取公因式 (a-b),得 a²-b²+a-b=(a+b)(a-b)+(a-b)=(a-b)(a+b+1)  。

【注意】如果把 a²-b²+a-b 变成 a²+a-b²-b=a(a+1)-b(b+1),就没有公因式,不能分解下去,达不到因式分解的要求。遇到这种情况,要换一种分组方法再试。

(4) 5(a²-b²)-a+b=5(a+b)(a-b)-(a-b)=(a-b)[5(a+b)-1]=(a-b)(5a+5b-1)  。

习题4-4(2)

分解因式:

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81a%5E4-x%5E4y%5E4.%5C%5C%0A%262%E3%80%81a%5E8b%5E8-1%5C%5C%0A%263%E3%80%81a%5E4-16.%5C%5C%0A%264%E3%80%8116a%5E4b%5E3-c%5E8.%5C%5C%0A%265%E3%80%81a%5E9-ab%5E2.%5C%5C%0A%266%E3%80%81a%5E2b%5E3-4a%5E2b.%5C%5C%0A%267%E3%80%81x%5E2-y%5E2%2Bx-y.%5C%5C%0A%268%E3%80%81x%5E2-y%5E2-x-y.%5C%5C%0A%269%E3%80%81x%5E2-y%5E2%2Bx%2By.%5C%5C%0A%2610%E3%80%81x%5E2-y%5E2-x%2By.%5C%5C%0A%2611%E3%80%81a%5E2-4b%5E2-a-2b.%5C%5C%0A%2612%E3%80%81a%5E2-4b%5E2-2a%2B4b.%5C%5C%0A%2613%E3%80%81a%5E3-4ab%5E2-a-2b.%5C%5C%0A%2614%E3%80%815x%5E2-5y%5E2%2Bx%2By.%5C%5C%0A%2615%E3%80%813x%5E2-3y%5E2-x-y.%5C%5C%0A%2616%E3%80%812x%5E2-2y%5E2-x%2By.%5C%5C%0A%2617%E3%80%81a%5E2%2Ba-b%5E2-b.%5C%5C%0A%2618%E3%80%81%20a%5E2%2Ba-b%5E2%2Bb.%5C%5C%0A%2619%E3%80%81a%5E3-ab%5E2%2Ba-b.%5C%5C%0A%2620%E3%80%81%20a%5E3-ab%5E2-a%5E2-ab.%0A%5Cend%7Baligned%7D

【答案】

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81(a%5E2%2Bx%5E2y%5E2)(a%2Bxy)(a-xy)%3B%20%5C%5C%0A%262%E3%80%81(a%5E4b%5E4%2B1)(a%5E2b%5E2%2B1)(ab%2B1)(ab-1)%3B%5C%5C%0A%263%E3%80%81(a%5E2%2B4)(a%2B2)(a-2)%3B%5C%5C%0A%264%E3%80%81(4a%5E%7B2%7Db%5E%7B4%7D%2Bc%5E%7B4%7D)(2ab%5E%7B2%7D%2Bc%5E%7B2%7D)(2ab%5E%7B2%7D-c%5E%7B2%7D)%3B%5C%5C%0A%265%E3%80%81a(a%5E%7B4%7D%2Bb)(a%5E%7B4%7D-b)%3B%20%5C%5C%0A%266%E3%80%81a%5E2b(b%2B2)(b-2)%3B%5C%5C%0A%267%E3%80%81(x-y)(x%2By%2B1)%3B%5C%5C%0A%268%E3%80%81(x%2By)(x-y%5Ccdot%20%20%5C%5C%0A%269%E3%80%81(x%2By)(x-y%2B1)%3B%5C%5C%0A%2610%E3%80%81(x-y)(x%2By-1)%3B%20%5C%5C%0A%2611%E3%80%81(a%2B2b)(a-2b-1)%3B%5C%5C%0A%2612%E3%80%81(a-2b)(a%2B2b-2)%20%5C%5C%0A%2613%E3%80%81(a%2B2b)(a%5E2-2ab-1)%3B%5C%5C%0A%2614%E3%80%81(x%2By)(5x-5y%2B1)%3B%20%5C%5C%0A%2615%E3%80%81(x%2By)(3x-3y-1)%3B%5C%5C%0A%2616%E3%80%81(x-y)(2x%2B2y-1)%3B%20%5C%5C%0A%2617%E3%80%81(a-b)(a%2Bb%2B1)%3B%5C%5C%0A%2618%E3%80%81(a%2Bb)(a-b%2B1)%3B%20%5C%5C%0A%2619%E3%80%81(a-b)(a%5E2%2Bab%2B1)%3B%5C%5C%0A%2620%E3%80%81a(a%2Bb)(a-b-1).%0A%5Cend%7Baligned%7D

2、完全平方的因式分解公式

【04】我们计算两数和或差的平方时可以应用下面的公式:(a+b)²=a²+2ab+b²,(a-b)²=a²-2ab+b²  。

【05】反过来就得到完全平方的因式分解公式

        a²+2ab+b²=(a+b)²(因式分解公式2),

        a²-2ab+b²=(a-b)²(因式分解公式3)。

【注】因为 a²+2ab+b² 和 a²-2ab+b² 可以分别化成两个数的和或者两个数的差的平方,我们把它们叫做完全平方式

例7.分解因式:(1) x²+2x+1;(2) x²-6ax+9a²;(3) 4a²-12ab+9b²;(4) a⁴+2a²b³+b⁶  。

【解】

%5Csmall%5Cbegin%7Baligned%7D%0A%26(1)%5C%3Bx%5E%7B2%7D%2B2x%2B1%3Dx%5E%7B2%7D%2B2%C2%B7x%C2%B71%2B1%5E%7B2%7D%3D(x%2B1)%5E%7B2%7D%3B%20%20%5C%5C%0A%26(2)%5C%3Bx%5E%7B2%7D-6ax%2B9a%5E%7B2%7D%3Dx%5E%7B2%7D-2%C2%B7%20x%C2%B73a%2B(3a)%5E%7B2%7D%3D(x-3a)%5E%7B2%7D%3B%20%20%5C%5C%0A%26(3)%5C%3B4a%5E%7B2%7D-12ab%2B9b%5E%7B2%7D%3D(2a)%5E%7B2%7D-2%C2%B7(2a)(3b)%2B(3b)%5E%7B2%7D%20%20%3D(2a-3b)%5E2%3B%20%5C%5C%0A%26(4)%5C%3Ba%5E4%2B2a%5E2b%5E3%2Bb%5E6%3D(a%5E2)%5E2%2B2%C2%B7(a%5E2)(b%5E3)%2B(b%5E3)%5E2%20%3D(a%5E2%2Bb%5E3)%5E2.%0A%5Cend%7Baligned%7D

【说明】要确定能不能应用公式2或3来分解,先要看两个平方项,确定公式里的 a 与 b 在这里各是什么,然后看中间一项是不是相当于+2ab 或-2ab  。如果是的,就可以分解成为两数和或差的平方形式了。在初学的时候,中间这个过渡性步骤,不要省掉。

例8.看下列各式的空格处各应该填什么,才能够应用上面的分解因式公式2或3  。

%5Csmall%5Cbegin%7Baligned%7D%26(1)%5C%3B%20x%5E2%2B%5CBox%20xy%2B25y%5E2%3B%5C%5C%26(2)%5C%3B100x%5E2-%5CBox%20xy%2B49y%5E2%3B%5C%5C%26(3)%5C%3B9x%5E2-36x%2B%5CBox%3B%5C%5C%26(4)%5C%3B%5Cfrac14x%5E2y%5E2-%5CBox%2Bz%5E4%3B%5C%5C%26(5)%5C%3B36a%5E4-60a%5E2b%5E2x%2B%5CBox%3B%5C%5C%26(6)%5C%3B49a%5E2-%5CBox%2B16b%5E6.%5Cend%7Baligned%7D

【解】

(1)这里 a 是 x,b 是 5y,∴ 2ab 应该是 10xy,空白处是 10;

(2)这里 a 是10x,b 是 7y,∴ 2ab 应该是 140xy,空白处是 140;

(3)这里 a 是 3x,从 36x 里分出 2·3x,得 2·3x·6,∴ b 是 6,空白处应该是 36;

(4)这里 a 是%5Cscriptsize%5Cfrac12xy%20,b 是 z²,空白处应为%5Cscriptsize2%C2%B7%5Cfrac12xy%20%C2%B7z%5E2%3Dxyz%5E2

(5)这里 a 是 6a²,从 60a²b²x 里分出 2·6a²,得 2·6a²·5b²x,∴ b 是 5b²x,空白处应该是 25b⁴x²;

(6)这里 a 是 7a,b 是 4b³,空白处应为 2·7a·4b³=56ab³  。

例9.分解因式:

%5Csmall%5Cbegin%7Baligned%7D%26(1)%5C%3B%20a%5E3-8a%5E2%2B16a%3B%5C%5C%26(3)%5C%3B%20x%5E4a%5E2%2B2a%5E3x%5E2%2Ba%5E2%3B%5Cend%7Baligned%7D%5Cquad%5Cbegin%7Baligned%7D%26(2)%5C%3B9(a%2Bb)%5E2%2B6(a%2Bb)%2B1%3B%5C%5C%26(4)%5C%3B(x%2By)%5E2-4(x%2By)b%5E2%2B4b%5E4.%5Cend%7Baligned%7D

【解】

%5Csmall%5Cbegin%7Baligned%7D%0A%26(1)%5C%3Ba%5E%7B3%7D-8a%5E%7B2%7D%2B16a%3Da(a%5E%7B3%7D-8a%2B16)%3Da(a-4)%5E%7B2%7D%3B%20%20%5C%5C%0A%26(2)%5C%3B9(a%2Bb)%5E%7B2%7D%2B6(a%2Bb)%2B1%20%5C%5C%0A%26%3D%5B3(a%2Bb)%5D%5E2%2B2%C2%B73(a%2Bb)1%2B1%5E2%20%5C%5C%0A%26%3D%5B3(a%2Bb)%2B1%5D%5E2%3D(3a%2B3b%2B1)%5E2%3B%20%5C%5C%0A%26(3)%5C%3B%20x%5E4a%5E2%2B2a%5E2x%5E2%2Ba%5E2%3Da%5E2(x%5E4%2B2x%5E2%2B1)%20%5C%5C%0A%26%3Da%5E2%5B(x%5E2)%5E2%2B2%C2%B7%20x%5E2%C2%B71%2B1%5E2%5D%3Da%5E2(x%5E2%2B1)%5E2%3B%20%5C%5C%0A%26(4)%5C%3B(x%2By)%5E%7B2%7D-4%5Cleft(x%2By%5Cright)b%5E%7B2%7D%2B4b%5E%7B4%7D%20%20%5C%5C%0A%26%3D(x%2By)%5E2-2(x%2By)%C2%B7(2b%5E2)%5Cbecause(2b%5E2)%5C%5C%0A%26%3D%5B(x%2By)-2b%5E2%5D%5E2%3D(x%2By-2b%5E2)%5E2.%0A%5Cend%7Baligned%7D

习题4-4(3)

分解因式(1~10):

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81x%5E%7B2%7D-12x%2B36.%5C%5C%0A%262%E3%80%81x%5E2%2B8x%2B16.%20%5C%5C%0A%263%E3%80%814a%5E2-20ab%2B25b%5E2.%20%5C%5C%0A%264%E3%80%819x%5E%7B2%7D%2B12xy%2B4y%5E%7B2%7D%E3%80%82%20%5C%5C%0A%265%E3%80%81y%5E2-50xy%2B625x%5E2.%20%5C%5C%0A%266%E3%80%81x%5E2-38x%2B361.%20%5C%5C%0A%267%E3%80%819x%5E2y%5E4%2B30xy%5E2z%2B25z%5E2%20%5C%5C%0A%268%E3%80%81x%5E%7B6%7D%2B24x%5E%7B3%7D%2B144%20%5C%5C%0A%269%E3%80%811-6ab%5E%7B8%7D%2B9a%5E%7B2%7Db%5E%7B6%7D.%20%5C%5C%0A%2610%E3%80%8149a%5E2-112ab%5E2%2B64b%5E4.%20%0A%5Cend%7Baligned%7D

在下列各题的空白处填上适当的数字或字母,使这个式子是一个完全平方式(11~14):

%5Csmall%5Cbegin%7Baligned%7D%0A%2611%E3%80%81%5Csquare%20a%5E2-6a%2B1.%5C%5C%0A%2612%E3%80%814a%5E2%2B%5CBox%20ab%2B25b%5E2.%5C%5C%0A%2613%E3%80%8164x%5E4%2B%5Csquare%2B9y%5E2.%5C%5C%0A%2614%E3%80%8149a%5E2b%5E2c%5E2-28abcd%5E2%2B%5CBox.%0A%5Cend%7Baligned%7D

分解因式(15~20):

%5Csmall%5Cbegin%7Baligned%7D%0A%2615%E3%80%81a%5E3-4a%5E2b%2B4ab%5E2.%5C%5C%0A%2616%E3%80%81a%5E4x%5E2%2B4a%5E3x%5E2y%2B4x%5E2y%5E2.%5C%5C%0A%2617%E3%80%8116a%5E2b%5E4-8ab%5E3c%5E2%2Bb%5E2c%5E4.%5C%5C%0A%2618%E3%80%819(a-b)%5E2%2B6(a-b)%2B1.%5C%5C%0A%2619%E3%80%81(a%2B2b)%5E2-10(a%2B2b)%2B25.%5C%5C%0A%2620%E3%80%814x%5E2(a%2Bb)%5E2-12xy(a%2Bb)%5E2%2B9y%5E2(a%2Bb)%5E2.%0A%5Cend%7Baligned%7D

【答案】

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81(x-6)%5E2%3B%5C%5C%0A%262%E3%80%81(x%2B4)%5E2%3B%5C%5C%0A%263%E3%80%81(2a-5b)%5E2%3B%5C%5C%0A%264%E3%80%81(3x%2B2y)%5E2%3B%5C%5C%0A%265%E3%80%81(y-25x)%5E2%3B%5C%5C%0A%266%E3%80%81(x-19)%5E2%3B%5C%5C%0A%267%E3%80%81(3xy%5E2%2B5z)%5E2%3B%5C%5C%0A%268%E3%80%81(x%5E3%2B12)%5E2%3B%5C%5C%0A%269%E3%80%81(1-3ab%5E3)%5E2%3B%5C%5C%0A%2610%E3%80%81(7a-8b%5E2)%5E2%3B%5C%5C%0A%2611%E3%80%819%3B%5C%5C%0A%2612%E3%80%8120%3B%5C%5C%0A%2613%E3%80%8148x%5E2y%3B%5C%5C%0A%2614%E3%80%814d%5E4%3B%5C%5C%0A%2615%E3%80%81a(a-2b)%5E4%3B%5C%5C%0A%2616%E3%80%81x%5E2(a%5E2%2B2y)%5E2%3B%5C%5C%0A%2617%E3%80%81b%5E2(4ab-c%5E2)%5E2%3B%5C%5C%0A%2618%E3%80%81(3a-3b%2B1)%5E2%3B%5C%5C%0A%2619%E3%80%81(a%2B2c-5)%5E2%3B%5C%5C%0A%2620%E3%80%81(a%2Bb)%5E2(2x-3y)%5E2.%0A%5Cend%7Baligned%7D

例10.分解因式:x²-a²+2ab-b²  。

【分析】这里不能直接应用公式,但是把后面三项括成一组,先应用公式3使 a²-2ab+b² 变成 (a-b)²,就可以应用平方差公式再进行因式分解。

【解】

%5Csmall%5Cbegin%7Baligned%7D%0A%26x%5E%7B2%7D-a%5E%7B2%7D%2B2ab-b%5E%7B2%7D%5C%5C%0A%26%20%3Dx%5E2-(a%5E2-2ab%2Bb%5E2)%20%20%5C%5C%0A%26%20%3Dx%5E2-(a-b)%5E2%20%20%5C%5C%0A%26%20%3D%5Cleft%5Bx%2B(a-b)%5Cright%5D%5Cleft%5Bx-(a-b)%5Cright%5D%20%20%5C%5C%0A%26%3D%5Cleft(x%2Ba-b%5Cright)%5Cleft(x-a%2Bb%5Cright).%0A%5Cend%7Baligned%7D

【注】如果把前面两项与后面两项各分成一组,那未 x²-a²+2ab-b²=(x²-a²)+(2ab-b²)=(x+a)(x-a)+b(2a-b),这样就不能再分解下去,达不到因式分解的目的。

例11.分解因式:4x²+12xy+9y²-16z²  。

【解】把前面三项括成一组,得

%5Csmall%5Cbegin%7Baligned%7D%0A%264x%5E%7B2%7D%2B12xy%2B9y%5E%7B2%7D-16z%5E%7B2%7D%5C%5C%0A%26%20%3D(4x%5E2%2B12xy%2B9y%5E2)-16z%5E2%20%20%5C%5C%0A%26%3D(2x%2B3y)%5E%7B2%7D-(4z)%5E%7B2%7D%20%5C%5C%0A%26%20%3D%5Cleft%5B%5Cleft(2x%2B3y%5Cright)%2B4z%5Cright%5D%5Cleft%5B%5Cleft(2x%2B3y%5Cright)-4z%5Cright%5D%20%20%5C%5C%0A%26%20%3D%5Cleft(2x%2B3y%2B4z%5Cright)%5Cleft(2x%2B3y-4z%5Cright).%0A%5Cend%7Baligned%7D

例12.分解因式:2ab-a²-b²+1  。

【解】

%5Csmall%5Cbegin%7Baligned%7D%262ab-a%5E2-b%5E2%2B1%3D1-(a%5E2-2ab%2Bb%5E2)%5C%5C%26%3D1-(a-b)%5E2%3D%5B1%2B(a-b)%5D%5B1-(a-b)%5D%5C%5C%26%3D(1%2Ba-b)%5Cleft(1-a%2Bb%5Cright).%5Cend%7Baligned%7D

例13.分解因式:x²-2xy+y²-a²-2ab-b²  。

【解】

%5Csmall%5Cbegin%7Baligned%7D%0A%26x%5E%7B2%7D-2xy%2By%5E%7B2%7D-a%5E%7B2%7D-2ab-b%5E%7B2%7D%20%20%5C%5C%0A%26%3D(x-y)%5E2-(a%5E2%2B2ab%2Bb%5E2)%20%5C%5C%0A%26%3D(x-y)%5E2-(a%2Bb)%5E2%20%5C%5C%0A%26%3D%5Cleft%5B(x-y)%2B(a%2Bb)%5Cright%5D%5Cleft%5B(x-y)-(a%2Bb)%5Cright%5D%20%5C%5C%0A%26%3D%5Cleft(x-y%2Ba%2Bb%5Cright)%5Cleft(x-y-a-b%5Cright).%0A%5Cend%7Baligned%7D

例14.分解因式:a²-4ab+4b²+6a-12b+9  。

【解】

%5Csmall%5Cbegin%7Baligned%7D%0A%26a%5E2%20-4ab%2B4b%5E%7B2%7D%2B6a-12b%2B9%20%20%5C%5C%0A%26%3D(a-2b)%5E2%2B2%C2%B73%C2%B7(a-2b)%2B9%20%5C%5C%0A%26%3D%5Cleft%5B(a-2b)%2B3%5Cright%5D%5E2%3D(a-2b%2B3)%5E2.%0A%5Cend%7Baligned%7D

习题4-4(4)

分解因式:

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81x%5E2%2B2xy%2By%5E2-9a%5E2.%5C%5C%0A%262%E3%80%814x%5E2-a%5E2-6a-9.%5C%5C%0A%263%E3%80%81x%5E2%2B4ax%2B4a%5E2-b%5E2.%5C%5C%0A%264%E3%80%819a%5E2-x%5E2%2B4x-4.%5C%5C%0A%265%E3%80%811-x%5E2%2B2xy-y%5E2.%5C%5C%0A%266%E3%80%81a%5E4-x%5E2%2B4ax-4a%5E2.%5C%5C%0A%267%E3%80%81%20a%5E2-b%5E2-x%5E2%2By%5E2-2ay%2B2bx.%5C%5C%0A%268%E3%80%81%20a%5E2%2B2ab%2Bb%5E2-2a-2b%2B1.%5C%5C%0A%269%E3%80%813a%5E2-6ab%2B3b%5E2-5a%2B5b.%5C%5C%0A%2610%E3%80%81%20a%5E2-4ab%2B4b%5E2-a%5E3%2B4ab%5E2.%0A%5Cend%7Baligned%7D

【答案】

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81(x%2By%2B3a)(x%2By-3a)%3B%5C%5C%0A%262%E3%80%81(2x%2Ba%2B3)(2x-a-3)%3B%5C%5C%0A%263%E3%80%81(x%2B2a%2Bb)(x%2B2a-b)%3B%20%5C%5C%0A%264%E3%80%81(3a%2Bx-2)(3a-x%2B2)%3B%5C%5C%0A%265%E3%80%81(1%2Bx-y)(1-x%2By)%3B%20%5C%5C%0A%266%E3%80%81(a%5E%7B2%7D%2Bx-2a)(a%5E%7B2%7D-x%2B2a)%3B%5C%5C%0A%267%E3%80%81(a-y%2Bb%20-x)(a-y-b%2Bx)%3B%5C%5C%0A%268%E3%80%81(a%2Bb-1)%5E%7B2%7D%3B%5C%5C%0A%269%E3%80%81(a-b)(3a-3b-5)%3B%20%20%5C%5C%0A%2610%E3%80%81(a-2b)(a-2b-a%5E%7B2%7D-2ab).%0A%5Cend%7Baligned%7D

3、立方和或立方差的因式分解法

【06】从乘法公式:(a+b)(a²-ab+b²)=a³+b³ 及 (a-b)(a²+ab+b²)=a³-b³,反过来就得到立方和或立方差的因式分解公式

        a³+b³=(a+b)(a²-ab+b²)(因式分解公式4),

        a³-b³=(a-b)(a²+ab+b²)(因式分解公式5)。

例15.分解因式:(1) a³+8b³;(2) 27a³-1;(3) a⁶-b⁹;(4) 8x⁶+27y¹²  。

【解】

%5Csmall%5Cbegin%7Baligned%7D%0A%26(1)%5C%3B%20a%5E3%2B8b%5E3%5C%5C%0A%26%3Da%5E3%2B(2b)%5E3%5C%5C%0A%26%3D(a%2B2b)%5Cleft%5Ba%5E2-a%C2%B7(2b)%2B(2b)%5E2%5Cright%5D%5C%5C%0A%26%3D(a%2B2b)%C2%B7(a%5E2-2ab%2B4b%5E2)%3B%5C%5C%0A%26(2)%5C%3B27a%5E3-1%5C%5C%0A%26%3D(3a)%5E3-1%5C%5C%26%3D(3a-1)%5Cleft%5B(3a)%5E2%2B8a%C2%B71%2B1%5E4%5Cright%5D%5C%5C%0A%26%3D(3a-1)%5Cleft(9a%5E2%2B3a%2B1%5Cright)%3B%5C%5C%0A%26(3)%5C%3B%20a%5E6-b%5E9%5C%5C%0A%26%3D(a%5E2)%5E3-(b%5E3)%5E3%5C%5C%0A%26%3D(a%5E3-b%5E3)%5Cleft%5B(a%5E2)%5E2%2B(a%5E2)%5Cleft(b%5E3%5Cright)%2B(b%5E3)%5E2%5Cright%5D%5C%5C%0A%26%3D(a%5E3-b%5E3)%5Cleft(a%5E4%2Ba%5E2b%5E3%2Bb%5E6%5Cright)%3B%5C%5C%0A%26(4)%5C%3B8x%5E6%2B27y%5E%7B12%7D%5C%5C%0A%26%3D(2x%5E2)%5E3%2B(3y%5E4)%5E3%5C%5C%0A%26%3D(2x%5E3%2B3y%5E4)%5Cleft%5B(2x%5E2)%5E2-(2x%5E2)(3y%5E4)%2B(3y%5E4)%5E2%5Cright%5D%5C%5C%0A%26%3D(2x%5E2%2B3y%5E4)%5Cleft(4x%5E4-6x%5E2y%5E4%2B9y%5E8%5Cright).%0A%5Cend%7Baligned%7D

【注意】切勿把 a³+b³ 分解成为 (a+b)³,把 a³-b³ 分解成为 (a-b)³  。

习题4-4(5)

分解因式:

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81a%5E3-125b%5E3.%5C%5C%0A%262%E3%80%818x%5E3%2B27.%5C%5C%0A%263%E3%80%81x%5E6%2By%5E9.%5C%5C%0A%264%E3%80%81x%5E6%2By%5E6.%5C%5C%0A%265%E3%80%81a%5E%7B12%7D%2Bb%5E%7B12%7D.%5C%5C%0A%266%E3%80%8164a%5E3-1.%5C%5C%0A%267%E3%80%81%5Cfrac18x%5E3-%5Cfrac1%7B27%7Dy%5E3.%5C%5C%0A%268%E3%80%81(x%2By)%5E3%2B8.%5C%5C%0A%269%E3%80%81343m%5E3-125n%5E6.%5C%5C%0A%2610%E3%80%811-8(a%2Bb)%5E3.%0A%5Cend%7Baligned%7D

【答案】

%5Csmall%5Cbegin%7Baligned%7D%0A%265%E3%80%81(a%5E4%2Bb%5E4)(a%5E8-a%5E4b%5E4%2Bb%5E8)%3B%20%5C%5C%0A%266%E3%80%81(4a-1)(16a%5E2%2B4a%2B1)%3B%20%5C%5C%0A%267%E3%80%81%5Cleft(%5Cfrac12x-%5Cfrac13y%5Cright)%5Cbiggl(%5Cfrac14x%5E2%2B%5Cfrac16xy%2B%5Cfrac19y%5E2%5Cbiggr)%3B%20%5C%5C%0A%268%E3%80%81(x%2By%2B2)(x%5E2%2B2xy%2By%5E2-2x-2y%2B4)%3B%20%5C%5C%0A%269%E3%80%81(7m-5n%5E2)(49m%5E2%2B35mn%5E2%2B25n%5E4)%3B%20%5C%5C%0A%2610%E3%80%81(1-2a-2b)(1%2B2a%2B2b%2B4a%5E%7B2%7D%2B8ab%2B4b%5E%7B2%7D).%0A%5Cend%7Baligned%7D

例16.分解因式:x⁶-y⁶  。

【解】先应用平方差公式,而后再应用公式4和5,得 

x⁶-y⁶=(x³)²-(y³)²=(x³+y³)(x³-y³)=(x+y)(x²-xy+y²)(x-y)(x²+xy+y²)  。

【注】如果先应用立方差公式,那末

x⁶-y⁶=(x²)³-(y²)³=(x²-y²)[(x²)²+x²y²+(y²)²]=(x+y)(x-y)(x⁴+x²y²+y⁴)  。

下一步要把 x⁴+x²y²+y⁴ 再进行分解,不太容易。实际上,x⁴+x²y²+y⁴ 可以这样分解:

x⁴+x²y²+y⁴=x⁴+x²y²+y⁴+x²y²-x²y²=x⁴+2x²y²+y⁴-x²y²=(x²+y²)²-(xy)²=(x²+y²+xy)(x²+y²-xy)=(x²+xy+y²)(x²-xy+y²),这里要加上一个 x²y² 再减去一个 x²y²,比较复杂了。以后如果遇到平方差公式与立方差公式都可以应用时,总以先用平方差公式比较妥当。

例17.分解因式:x³+x²+x-y³-y²-y  。

【分析】先根据加法交换律与结合律把六项分成三组,第一组用立方差公式分解,第二组用平方差公式分解,这样可以有一个二项公因式 x-y  。

【解】

%5Csmall%5Cbegin%7Baligned%7D%0A%26x%5E%7B3%7D%20%2Bx%5E%7B2%7D%2Bx-y%5E%7B3%7D-y%5E%7B2%7D-y%20%20%5C%5C%0A%26%3D(x%5E3-y%5E3)%2B(x%5E2-y%5E2)%2B(x-y)%20%5C%5C%0A%26%3D(x-y)%5Cleft(x%5E2%2Bxy%2By%5E2%5Cright)%2B(x%2By)%5Cleft(x-y%5Cright)%2B(x-y)%20%5C%5C%0A%26%3D(x-y)%5Cleft%5B(x%5E2%2Bxy%2By%5E2)%2B(x%2By)%2B1%5Cright%5D%20%5C%5C%0A%26%3D%5Cleft(x-y%5Cright)%5Cleft(x%5E2%2Bxy%2By%5E2%2Bx%2By%2B1%5Cright).%0A%5Cend%7Baligned%7D

【注意】如果把原式直接分成有 x 的与有 y 的两组,那末

x³+x²+x-y³-y²-y=x(x²+x+1)-y(y²+y+1),这样就不能达到分解因式的目的。

习题4-4(6)

分解因式:

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81a%5E%7B6%7D-64b%5E%7B6%7D%5C%5C%0A%26%202%E3%80%81a%5E%7B12%7D-b%5E%7B12%7D.%20%20%5C%5C%0A%263%E3%80%81x%5E%7B3%7D%2B6x%2By%5E%7B3%7D%2B6y%5C%5C%0A%26%204%E3%80%81x%5E%7B3%7D-y%5E%7B3%7D-x%5E%7B2%7D%2B2xy-y%5E%7B2%7D.%20%20%5C%5C%0A%265%E3%80%81%20x%5E3-x%5E2-x-y%5E3%2By%5E2%2By%5C%5C%0A%26%206%E3%80%81a%5E3-a%5E2-a%2Bb-b%5E2%2B2ab-b%5E3.%20%20%5C%5C%0A%267%E3%80%81a%5E3%2Ba%5E2%2Bb%5E3%2Bb%5E2%2B2ab.%5C%5C%0A%26%208%E3%80%81a%5E%7B3%7D%2Ba%5E%7B2%7D%2Bb%5E%7B3%7D-b%5E%7B2%7D%2Ba%2Bb.%20%20%5C%5C%0A%269%E3%80%81a%5E%7B3%7D%2B8b%5E%7B3%7D%2B2a%2B4b.%5C%5C%0A%26%2010%E3%80%81a%5E%7B6%7D%2Ba%5E%7B2%7D%2Bb%5E%7B6%7D%2Bb%5E%7B2%7D%20%0A%5Cend%7Baligned%7D

【答案】

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81(a%2B2b)(a%5E2-2ab%2B4b%5E2)(a-2b)(a%5E2%2B2ab%2B4b%5E2)%3B%5C%5C%0A%262%E3%80%81(a%5E2%2Bb%5E2)(a%5E4-a%5E2b%5E2%2Bb%5E4)(a%2Bb)(a%5E2-ab%2Bb%5E2)(a-b)(a%5E2%2Bab%2Bb%5E2)%3B%5C%5C%0A%263%E3%80%81(x%2By)(x%5E2-xy%2By%5E2%2B6)%3B%5C%5C%0A%264%E3%80%81(x-y)(x%5E2%2Bxy%2By%5E2-x%2By)%3B%5C%5C%0A%265%E3%80%81(x-y)(x%5E2%2Bxy%2By%5E2-x-y-1)%3B%5C%5C%0A%266%E3%80%81(a-b)(a%5E2%2Bab%2Bb%5E2-a%2Bb-1)%3B%5C%5C%0A%267%E3%80%81(a%2Bb)(a%5E2-ab%2Bb%5E2%2Ba%2Bb)%3B%5C%5C%0A%268%E3%80%81(a%2Bb)(a%5E2-ab%2Bb%5E2%2Ba-b%2B1)%3B%5C%5C%0A%269%E3%80%81(a%2B2b)(a%5E2-2ab%2B4b%5E2%2B2)%3B%5C%5C%0A%2610%E3%80%81(a%5E2%2Bb%5E2)(a%5E4-a%5E2b%5E2%2Bb%5E4%2B1).%0A%5Cend%7Baligned%7D

4、完全立方的因式分解法

【07】从乘法公式:(a+b)³=a³+3a²b+3ab²+b³ 及 (a-b)³=a³-3a²b+3ab²-b³,反过来可得完全立方的因式分解公式

        a³+3a²b+3ab²+b³=(a+b)³(因式分解公式6),

        a³-3a²b+3ab²-b³=(a-b)³(因式分解公式7)。

例18.分解因式:a⁶-3a⁴b+3a²b²-b³  。

【解】

%5Csmall%5Cbegin%7Baligned%7D%26a%5E6-3a%5E4b%2B3a%5E2b%5E2-b%5E3%5C%5C%26%3D(a%5E2)%5E3-3%5Cleft(a%5E2%5Cright)%5E2b%2B3%5Cleft(a%5E2%5Cright)b%5E2-b%5E3%5C%5C%26%3D(a%5E2-b)%5E3.%5Cend%7Baligned%7D

例19.分解因式:a³+6a²b+12ab²+8b³  。

【解】

%5Csmall%5Cbegin%7Baligned%7D%0A%26a%5E3%2B6a%5E2b%2B12ab%5E2%2B8b%5E3%5C%5C%0A%26%3Da%5E3%2B3%C2%B7a%5E2(2b)%2B3%C2%B7a(2b)%5E2%2B(2b)%5E3%5C%5C%0A%26%3D(a%2B2b)%5E3.%0A%5Cend%7Baligned%7D

【说明】要应用这两个公式,可先看两个立方项,确定公式里的 a 与 b 各是什么,然后看中间两项是否刚刚是 3a²b 和 3ab²,再看符号是否对头。一定要完全合适,才能应用公式。

习题4-4(7)

分解因式:

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%818a%5E%7B3%7D-12a%5E%7B2%7Db%2B6ab%5E%7B2%7D-b%5E%7B3%7D.%5C%5C%0A%262%E3%80%8127x%5E%7B3%7D%2B54x%5E%7B2%7Dy%2B36xy%5E%7B2%7D%2B8y%5E%7B3%7D.%5C%5C%0A%263%E3%80%8127x%5E3-108x%5E2y%2B144xy%5E2-64y%5E3.%5C%5C%0A%264%E3%80%811%2B12x%5E2y%5E2%2B48x%5E4y%5E4%2B64x%5E6y%5E6.%5C%5C%0A%265%E3%80%81x%5E6-6x%5E4y%2B12x%5E2y%5E2-8y%5E3.%5C%5C%0A%266%E3%80%8127x%5E3-9x%5E2y%2Bxy%5E2-%5Cfrac1%7B27%7Dy%5E3.%5C%5C%0A%267%E3%80%81a%5E4-3a%5E3%2B3a%5E2-a.%5C%5C%0A%268%E3%80%811-3(x-y)%2B3(x-y)%5E2-(x-y)%5E3.%5C%5C%0A%269%E3%80%81x%5E6-3x%5E4y%5E2%2B3x%5E2y%5E4-y%5E6.%5C%5C%0A%2610%E3%80%811-12a%5E2b%5E2%2B48a%5E4b%5E4-64a%5E5b%5E8.%0A%5Cend%7Baligned%7D

【答案】

%5Csmall%5Cbegin%7Baligned%7D%0A%261%E3%80%81(2a-b)%5E3%3B%5C%5C%0A%262%E3%80%81(3x%2B2y)%5E3%3B%5C%5C%0A%263%E3%80%81(3x-4y)%5E3%3B%5C%5C%0A%264%E3%80%81(1%2B4x%5E2y%5E2)%5E3%3B%5C%5C%0A%265%E3%80%81(x%5E2-2y)%5E3%3B%5C%5C%0A%266%E3%80%81(3x-%5Cfrac13y)%5E3%3B%5C%5C%0A%267%E3%80%81%20a(a-1)%5E3%3B%5C%5C%0A%268%E3%80%81(1-x%2By)%5E3%3B%5C%5C%0A%269%E3%80%81(x%2By)%5E3(x-y)%5E3%3B%5C%5C%0A%2610%E3%80%81(1%2B2ab)%5E3(1-2ab)%5E3.%0A%5Cend%7Baligned%7D

【种花家务·代数】1-4-04公式分解法『数理化自学丛书6677版』的评论 (共 条)

分享到微博请遵守国家法律