欢迎光临散文网 会员登陆 & 注册

公切线问题的转化路径(2019课标Ⅱ导数)

2022-10-19 11:17 作者:数学老顽童  | 我要投稿

(2019课标Ⅱ,20)已知函数f%5Cleft(%20x%20%5Cright)%20%3D%5Cln%20%20x-%5Cfrac%7Bx%2B1%7D%7Bx-1%7D.

(1)讨论f%5Cleft(%20x%20%5Cright)%20的单调性,并证明f%5Cleft(%20x%20%5Cright)%20有且仅有两个零点;

(2)设x_0f%5Cleft(%20x%20%5Cright)%20的一个零点,证明曲线y%3D%5Cln%20%20x在点A%5Cleft(%20x_0%2C%5Cln%20%20x_0%20%5Cright)%20处的切线也是曲线y%3D%5Cmathrm%7Be%7D%5Ex的切线.

解:(1)f%5Cleft(%20x%20%5Cright)%20的定义域为

%5Ccolor%7Bred%7D%7B%5Cleft(%200%2C1%20%5Cright)%20%5Ccup%20%5Cleft(%201%2C%2B%5Cinfty%20%5Cright)%20%7D

%5Cbegin%7Baligned%7D%0A%09%5Ccolor%7Bred%7D%7Bf'%5Cleft(%20x%20%5Cright)%20%7D%26%3D%5Cfrac%7B1%7D%7Bx%7D-%5Cfrac%7B1%5Ccdot%20%5Cleft(%20x-1%20%5Cright)%20-%5Cleft(%20x%2B1%20%5Cright)%20%5Ccdot%201%7D%7B%5Cleft(%20x-1%20%5Cright)%20%5E2%7D%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7Bx%7D%2B%5Cfrac%7B2%7D%7B%5Cleft(%20x-1%20%5Cright)%20%5E2%7D%5Ccolor%7Bred%7D%7B%3E0%7D%5C%5C%0A%5Cend%7Baligned%7D

f%5Cleft(%20x%20%5Cright)%20%5Ccolor%7Bred%7D%7B%5Cleft(%200%2C1%20%5Cright)%20%7D%5Ccolor%7Bred%7D%7B%5Cleft(%201%2C%2B%5Cinfty%20%5Cright)%20%7D分别%5Ccolor%7Bred%7D%7B%5Cnearrow%20%7D

又因为

%5Ccolor%7Bred%7D%7Bf%5Cleft(%20%5Cfrac%7B1%7D%7B%5Cmathrm%7Be%7D%5E2%7D%20%5Cright)%7D%20%3D%5Cfrac%7B3-%5Cmathrm%7Be%7D%5E2%7D%7B%5Cmathrm%7Be%7D%5E2-1%7D%5Ccolor%7Bred%7D%7B%3C0%7D

%5Ccolor%7Bred%7D%7Bf%5Cleft(%20%5Cfrac%7B1%7D%7B%5Cmathrm%7Be%7D%7D%20%5Cright)%7D%20%3D%5Cfrac%7B2%7D%7B%5Cmathrm%7Be%7D-1%7D%5Ccolor%7Bred%7D%7B%3E0%7D

%5Ccolor%7Bred%7D%7Bf%5Cleft(%20%5Cmathrm%7Be%7D%20%5Cright)%7D%20%3D%5Cfrac%7B2%7D%7B1-%5Cmathrm%7Be%7D%7D%5Ccolor%7Bred%7D%7B%3C0%7D

%5Ccolor%7Bred%7D%7Bf%5Cleft(%20%5Cmathrm%7Be%7D%5E2%20%5Cright)%20%7D%3D%5Cfrac%7B%5Cmathrm%7Be%7D%5E2-3%7D%7B%5Cmathrm%7Be%7D%5E2-1%7D%5Ccolor%7Bred%7D%7B%3E0%7D

所以f%5Cleft(%20x%20%5Cright)%20仅在%5Cleft(%20%5Cfrac%7B1%7D%7B%5Cmathrm%7Be%7D%5E2%7D%2C%5Cfrac%7B1%7D%7B%5Cmathrm%7Be%7D%7D%20%5Cright)%20%5Cleft(%20%5Cmathrm%7Be%7D%2C%5Cmathrm%7Be%7D%5E2%20%5Cright)%20各存在一个零点,即f%5Cleft(%20x%20%5Cright)%20有且仅有两个零点.

(横屏观看)

(2)因为x_0f%5Cleft(%20x%20%5Cright)%20的零点,

所以%5Ccolor%7Bred%7D%7B%20%5Cln%20%20x_0%3D%5Cfrac%7Bx_0%2B1%7D%7Bx_0-1%7D%7D

%5Cleft(%20%5Cln%20%20x%20%5Cright)%20'%3D%5Cfrac%7B1%7D%7Bx%7D,所以

y%3D%5Cln%20%20x%5Cleft(%20x_0%2C%5Cln%20%20x_0%20%5Cright)%20处的切线斜率为%5Cfrac%7B1%7D%7Bx_0%7D

故该点处的切线方程为

y-%5Cln%20%20x_0%3D%5Cfrac%7B1%7D%7Bx_0%7D%5Cleft(%20x-x_0%20%5Cright)%20

整理得%5Ccolor%7Bred%7D%7By%3D%5Cfrac%7B1%7D%7Bx_0%7D%5Ccdot%20x%2B%5Cln%20%20x_0-1%7D.

记该直线为%5Ccolor%7Bred%7D%7Bl_1%7D.

设曲线y%3D%5Cmathrm%7Be%7D%5Exl_1斜率相等的切线为%5Ccolor%7Bred%7D%7Bl_2%7D

l_2与曲线y%3D%5Cmathrm%7Be%7D%5Ex相切于%5Cleft(%20x_1%2C%5Cmathrm%7Be%7D%5E%7Bx_1%7D%20%5Cright)%20

因为%5Cleft(%20%5Cmathrm%7Be%7D%5Ex%20%5Cright)'%3D%5Cmathrm%7Be%7D%5Ex

故该点处的切线斜率为%5Cmathrm%7Be%7D%5E%7Bx_1%7D

因为%5Ccolor%7Bred%7D%7B%5Cmathrm%7Be%7D%5E%7Bx_1%7D%3D%5Cfrac%7B1%7D%7Bx_0%7D%7D,所以%5Ccolor%7Bred%7D%7Bx_1%3D-%5Cln%20x_0%7D.

所以%5Cleft(%20x_1%2C%5Cmathrm%7Be%7D%5E%7Bx_1%7D%20%5Cright)%20即为%5Ccolor%7Bred%7D%7B%5Cleft(-%5Cln%20x_0%2C%5Cfrac%7B1%7D%7Bx_0%7D%5Cright)%20%7D.

因为

%5Cbegin%7Baligned%7D%0A%09y%26%3D%5Cfrac%7B1%7D%7Bx_0%7D%5Ccdot%20%5Cleft(%20%5Ccolor%7Bred%7D%7B-%5Cln%20x_0%7D%20%5Cright)%20%2B%5Cln%20x_0-1%5C%5C%0A%09%26%3D%5Cfrac%7B1%7D%7Bx_0%7D%5Ccdot%20%5Cleft(%20-%5Cfrac%7Bx_0%2B1%7D%7Bx_0-1%7D%20%5Cright)%20%2B%5Cfrac%7Bx_0%2B1%7D%7Bx_0-1%7D-1%5C%5C%0A%09%26%3D%5Ccolor%7Bred%7D%7B%5Cfrac%7B1%7D%7Bx_0%7D%7D%5C%5C%0A%5Cend%7Baligned%7D

所以点%5Cleft(%20-%5Cln%20%20x_0%2C%5Cfrac%7B1%7D%7Bx_0%7D%20%5Cright)%20在直线%5Ccolor%7Bred%7D%7Bl_1%7D.

所以直线l_1与直线l_2重合

所以l_1也是曲线y%3D%5Cmathrm%7Be%7D%5Ex的切线.


公切线问题的转化路径(2019课标Ⅱ导数)的评论 (共 条)

分享到微博请遵守国家法律