欢迎光临散文网 会员登陆 & 注册

【优化求解】基于混沌反向学习改进灰狼算法matlab源码

2021-08-08 10:32 作者:Matlab工程师  | 我要投稿

灰狼优化算法(Grey Wolf Optimization,GWO)是新型启元优化算法,相比于其他群体智能优化算法,该算法同样存在收敛速度较慢、不稳定、易陷入局部最优等问题。针对上述问题,根据GWO算法的结构特点,提出了一种自适应调整策略的混沌灰狼优化算法(Chaotic Local Search GWO),利用自适应调整策略来提高GWO算法的收敛速度,通过混沌局部搜索策略增加种群的多样性,使搜索过程避免陷入局部最优。最后利用6个测试函数对算法进行仿真验证,并结合其他4种算法进行了横向比较。实验结果证明,所提出的改进算法在收敛速度、精度以及稳定性方面具有明显的优势。

clear all clc SearchAgents_no=30; % Number of search agents Max_iteration=500; % Maximum numbef of iterations Function_name='F12'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper) %for func_num=18:23;  % initial_flag=0;   %Function_name=strcat('F',num2str(func_num)); % time=cputime; % Load details of the selected benchmark function [lb,ub,dim,fobj]=Get_Functions_details(Function_name); [Best_score,Best_pos,GWO_cg_curve]=GWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); [Best_score,Best_pos,IGWO_cg_curve]=IGWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); PSO_cg_curve=PSO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); % run PSO to compare to results [Best_score,Best_pos,CGWO_cg_curve]=CGWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); [Best_score,Best_pos,FGWO_cg_curve]=FGWO(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); [Best_score,Best_pos,SCA_cg_curve]=SCA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); figure('Position',[500 500 660 290]) %Draw search space subplot(1,2,1); func_plot(Function_name); title('Parameter space') xlabel('x_1'); ylabel('x_2'); zlabel([Function_name,'( x_1 , x_2 )']) %Draw objective space subplot(1,2,2); semilogy(GWO_cg_curve,'Color','r') hold on semilogy(PSO_cg_curve,'Color','b') title('Objective space') xlabel('Iteration'); ylabel('Best score obtained so far'); hold on semilogy(IGWO_cg_curve,'Color','g') title('Objective space') xlabel('Iteration'); ylabel('Best score obtained so far'); hold on semilogy(CGWO_cg_curve,'Color','c') title('Objective space') xlabel('Iteration'); ylabel('Best score obtained so far'); hold on semilogy(FGWO_cg_curve,'Color','m') title('Objective space') xlabel('Iteration'); ylabel('Best score obtained so far'); hold on semilogy(SCA_cg_curve,'Color','k') title('Objective space') xlabel('Iteration'); ylabel('Best score obtained so far'); CGWO_ave=mean2(CGWO_cg_curve); CGWO_std=std2(CGWO_cg_curve); GWO_ave=mean2(GWO_cg_curve); GWO_std=std2(GWO_cg_curve); FGWO_ave=mean2(FGWO_cg_curve); FGWO_std=std2(FGWO_cg_curve); IGWO_ave=mean2(IGWO_cg_curve); IGWO_std=std2(IGWO_cg_curve); PSO_ave=mean2(PSO_cg_curve); PSO_std=std2(PSO_cg_curve); SCA_ave=mean2(SCA_cg_curve); SCA_std=std2(SCA_cg_curve); axis tight grid on box on legend('GWO','PSO','IGWO','CGWO','FGWO','SCA') display(['The best solution obtained by CGWO is : ', num2str(Best_pos)]); display(['The best optimal value of the objective funciton found by CGWO is : ', num2str(Best_score)]);

博主擅长优化求解、神经网络预测、信号处理、元胞自动机、图像处理等多种领域的Matlab仿真,QQ1575304183


【优化求解】基于混沌反向学习改进灰狼算法matlab源码的评论 (共 条)

分享到微博请遵守国家法律