2022张宇八套卷高分版总结4
第四套卷20:50-22:35,用时105分钟,经典不到两个小时,中间有些题属实是我高估它了。。。。要不然时间可以更短,总体来说,只要保证计算的准确程度,这张卷子的难度就没什么了。不过嘛。。。。这张卷有些题还是可圈可点的,就是有些题的解析属实是迷惑行为了。
选择题:
难度系数:★★★(肯定比上一张卷难)
1、开门这题啊。。。。题干花里胡哨,害得我以为是放缩类的题呢,结果就是个很普通的求极限。。。。要是出现在别的老师的模拟卷上,我估计就不会想那么多了,张宇老师的卷子居然搞得如此朴实无华,属实是我没想到的。
2、没什么好说的吧。。。。非常普通的反常积分判敛
3、平面束方程咯~
4、这题的解析就很迷惑,花里胡哨搞了那么多,我属实不知道在干什么。反正纠其根本,就是个考轮换对称性的题,我要是出题的,就把题干的圆变成球,L是球和x+y+z=1的交线,后面的式子里再加一个z,这样迷惑性还能更高一点。。。。但反正再怎么改也是万变不离其宗。
5、说穿了就是绕了个小弯弯,给伴随矩阵和行列式的值,和给逆矩阵没什么区别,见过直接秒,没见过。。。现在见过了吧~还有可能会错的无非也就是,最后别忘了系数,选C的话属实就可惜了
6、做为选择题,直接把A看成E就完事了。。。
7、非齐次方程的解一些出来,A直接就有了,剩下的还不是为所欲为~
8、后面的-1/8直接把这题的难度整没了,要是后面是1/8,估计会有人只算x>0的部分吧。。。
9、注意x的概率密度的取值范围即可
10、天哪。。。。这题的计算量属实不像是一个选择题,我觉得应该换一下,这个改一改变成大题,后面的概率论大题改成的填空刚刚好。。。。题本身不难,知道利用一阶中心矩和二阶中心矩求a和b就可以。
选择题总体不难,从计算量的角度讲,确实有真题的感觉,只不过事到如今,这个难度估计是很难有明显的区分度。。。
填空题:
难度系数:★★(一颗星太不好看了)
11、不是斜渐近线差评。。。该提的提,该合的合,没什么好说的
12、一看就是关于对称性的题,不会真有人准备一杯茶在这跟这积分硬刚吧。。。。。别跟自己过不去
13、一看f(x)就是偶函数,没看出来的话。。。。自行复习到后半夜两点
14、最基本的求导法则,朴实无华
15、铛铛铛,社区送温暖
16、emmmmm,非要说的话,建议会用伽马函数
15分钟,不能再多了,如果填空题用了超过20分钟,那么建议再去巩固一下基本功
主观题:
难度系数:★★
17、①偶函数②区间再现③over
18、这都把柯西扔到脸上了,就差在题干里写“请用柯西中值定理证明”了。。。。。至于那个极限。。。。函数都能解出来,剩下的就是单纯的求极限了。。。。。最近的题都怎么回事,拉格朗日配泰勒的那种求极限题已经过时了?
19、emmmmm,多纯粹的计算题啊~
20、表面上是一个高端大气上档次的级数题,结果整个题和级数几乎没有半毛钱的关系,我宁愿题干看着特别简单,涉及到的知识比较高端。。。。。第一问也就是个高数教材例题级别的解微分方程。至于第二个问,我属实不明白解析给的什么乱七八糟的计算,明明S`(1)+S(1)就能解决的问题,解析居然把an给解出来了。。。。。建议严查写答案的。。。。
21、这。。。没什么好说的,做为一道线代大题,计算难度大于理论难度,属实不像偶数年的题
22、这个题。。。估计做填空题更合适
大题总体来说相当基础了,几乎没有“逻辑方面”的难度,仅仅能起到一个提点知识、检验计算能力的作用,对于拓展拔高属实没有什么太大的帮助。
总之,卷子整体难度不大,和上一套一样,100分钟左右140+是很正常的,如果超过120分钟或者分数不足130,那就应该考虑花更多的时间在数学上了。
顺便说一句,我对于分数的标准是这样的,如果我只错了两个选填题,就认为自己是130+,因为很难保证大题没有任何纰漏,某处写得不规范是难免的事情,难免扣分,所以认为是130+,如果错了三个选填题,就认为是130。如果大题卡在某一步了,就把当前问的分数扣光,没有小问当自己整道大题都没分。这样得出的分数我觉得是比较科学的。适合用来衡量自己对于一张卷子的掌握程度。我所谓的分数标准都是在这种算分方式的情况下得到的分。